File size: 72,146 Bytes
d3b8c8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 |
#!/usr/bin/env python3
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
# E-RADIO (FasterViTv2) model from
# Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. "AM-RADIO: Agglomerative Model--Reduce All Domains Into One." arXiv preprint arXiv:2312.06709 (2023).
# based on FasterViT, Swin Transformer, YOLOv8
# FasterViT:
# Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. "FasterViT: Fast Vision Transformers with Hierarchical Attention." arXiv preprint arXiv:2306.06189 (2023).
import timm
import torch
import torch.nn as nn
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
import numpy as np
import torch.nn.functional as F
import math
import warnings
#######################
## Codebase from YOLOv8
## BEGINNING
#######################
class C2f(nn.Module):
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
"""From YOLOv8 codebase"""
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, drop_path=None): # ch_in, ch_out, number, shortcut, groups, expansion
super().__init__()
if drop_path is None:
drop_path = [0.0] * n
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0, drop_path=drop_path[i]) for i in range(n))
def forward(self, x):
"""Forward pass through C2f layer."""
y = list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
def forward_split(self, x):
"""Forward pass using split() instead of chunk()."""
y = list(self.cv1(x).split((self.c, self.c), 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
class Bottleneck(nn.Module):
"""Standard bottleneck."""
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5, drop_path=0.0): # ch_in, ch_out, shortcut, groups, kernels, expand
super().__init__()
c_ = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, c_, k[0], 1)
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
self.add = shortcut and c1 == c2
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
"""'forward()' applies the YOLOv5 FPN to input data."""
return x + self.drop_path1(self.cv2(self.cv1(x))) if self.add else self.cv2(self.cv1(x))
class Conv(nn.Module):
"""Modified to support layer fusion"""
default_act = nn.SiLU() # default activation
def __init__(self, a, b, kernel_size=1, stride=1, padding=None, g=1, dilation=1, bn_weight_init=1, bias=False, act=True):
super().__init__()
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, autopad(kernel_size, padding, dilation), dilation, g, bias=False)
if 1:
self.bn = torch.nn.BatchNorm2d(b)
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
torch.nn.init.constant_(self.bn.bias, 0)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self,x):
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
return x
@torch.no_grad()
def switch_to_deploy(self):
# return 1
if not isinstance(self.bn, nn.Identity):
c, bn = self.conv, self.bn
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
w = c.weight * w[:, None, None, None]
b = bn.bias - bn.running_mean * bn.weight / \
(bn.running_var + bn.eps)**0.5
self.conv.weight.data.copy_(w)
self.conv.bias = nn.Parameter(b)
self.bn = nn.Identity()
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
#######################
## Codebase from YOLOv8
## END
#######################
def pixel_unshuffle(data, factor=2):
# performs nn.PixelShuffle(factor) in reverse, torch has some bug for ONNX and TRT, so doing it manually
B, C, H, W = data.shape
return data.view(B, C, factor, H//factor, factor, W//factor).permute(0,1,2,4,3,5).reshape(B, -1, H//factor, W//factor)
class SwiGLU(nn.Module):
# should be more advanced, but doesnt improve results so far
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return F.silu(gate) * x
def window_partition(x, window_size):
"""
Function for partitioning image into windows and later do windowed attention
Args:
x: (B, C, H, W)
window_size: window size
Returns:
windows - local window features (num_windows*B, window_size*window_size, C)
(Hp, Wp) - the size of the padded image
"""
B, C, H, W = x.shape
if window_size == 0 or (window_size==H and window_size==W):
windows = x.flatten(2).transpose(1, 2)
Hp, Wp = H, W
else:
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
if pad_h > 0 or pad_w > 0:
x = F.pad(x, (0, pad_w, 0, pad_h), mode="reflect")
Hp, Wp = H + pad_h, W + pad_w
x = x.view(B, C, Hp // window_size, window_size, Wp // window_size, window_size)
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
return windows, (Hp, Wp)
class Conv2d_BN(nn.Module):
'''
Conv2d + BN layer with folding capability to speed up inference
Can be merged with Conv() function with additional arguments
'''
def __init__(self, a, b, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1, bias=False):
super().__init__()
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, padding, dilation, groups, bias=False)
if 1:
self.bn = torch.nn.BatchNorm2d(b)
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
torch.nn.init.constant_(self.bn.bias, 0)
def forward(self,x):
x = self.conv(x)
x = self.bn(x)
return x
@torch.no_grad()
def switch_to_deploy(self):
if not isinstance(self.bn, nn.Identity):
c, bn = self.conv, self.bn
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
w = c.weight * w[:, None, None, None]
b = bn.bias - bn.running_mean * bn.weight / \
(bn.running_var + bn.eps)**0.5
self.conv.weight.data.copy_(w)
self.conv.bias = nn.Parameter(b)
self.bn = nn.Identity()
def window_reverse(windows, window_size, H, W, pad_hw):
"""
Windows to the full feature map
Args:
windows: local window features (num_windows*B, window_size, window_size, C)
window_size: Window size
H: Height of image
W: Width of image
pad_w - a tuple of image passing used in windowing step
Returns:
x: (B, C, H, W)
"""
# print(f"window_reverse, windows.shape {windows.shape}")
Hp, Wp = pad_hw
if window_size == 0 or (window_size==H and window_size==W):
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
x = windows.transpose(1, 2).view(B, -1, H, W)
else:
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], Hp, Wp)
if Hp > H or Wp > W:
x = x[:, :, :H, :W, ].contiguous()
return x
class PosEmbMLPSwinv2D(nn.Module):
"""
2D positional embedding from Swin Transformer v2
Added functionality to store the positional embedding in the model and not recompute it every time
"""
def __init__(
self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False, cpb_mlp_hidden=512,
):
super().__init__()
self.window_size = window_size
self.num_heads = num_heads
# mlp to generate continuous relative position bias
self.cpb_mlp = nn.Sequential(
nn.Linear(2, cpb_mlp_hidden, bias=True),
nn.ReLU(inplace=True),
nn.Linear(cpb_mlp_hidden, num_heads, bias=False),
)
self.grid_exists = False
self.seq_length = seq_length
self.deploy = False
self.num_heads = num_heads
self.no_log = no_log
self.pretrained_window_size = pretrained_window_size
self.relative_bias_window_size = window_size
relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(window_size, num_heads,
pretrained_window_size, seq_length,
no_log)
self.register_buffer("relative_coords_table", relative_coords_table)
self.register_buffer("relative_position_index", relative_position_index)
self.register_buffer("relative_bias", relative_bias) # for EMA
def relative_bias_initialization(self, window_size, num_heads, pretrained_window_size, seq_length, no_log):
# as in separate function to support window size chage after model weights loading
relative_coords_h = torch.arange(
-(window_size[0] - 1), window_size[0], dtype=torch.float32
)
relative_coords_w = torch.arange(
-(window_size[1] - 1), window_size[1], dtype=torch.float32
)
relative_coords_table = (
torch.stack(torch.meshgrid([relative_coords_h, relative_coords_w]))
.permute(1, 2, 0)
.contiguous()
.unsqueeze(0)
) # 1, 2*Wh-1, 2*Ww-1, 2
if pretrained_window_size[0] > 0:
relative_coords_table[:, :, :, 0] /= pretrained_window_size[0] - 1
relative_coords_table[:, :, :, 1] /= pretrained_window_size[1] - 1
else:
relative_coords_table[:, :, :, 0] /= self.window_size[0] - 1
relative_coords_table[:, :, :, 1] /= self.window_size[1] - 1
if not no_log:
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = (
torch.sign(relative_coords_table)
* torch.log2(torch.abs(relative_coords_table) + 1.0)
/ np.log2(8)
)
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :]
) # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0
).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
self.relative_bias_window_size = window_size
return relative_coords_table, relative_position_index, relative_bias
def switch_to_deploy(self):
self.deploy = True
self.grid_exists = True
def forward(self, input_tensor):
# for efficiency, we want this forward to be folded into a single operation (sum)
# if resolution stays the same, then we dont need to recompute MLP layers
if not self.deploy or self.training:
self.grid_exists = False
#compare if all elements in self.window_size list match those in self.relative_bias_window_size
if not all([self.window_size[i] == self.relative_bias_window_size[i] for i in range(len(self.window_size))]):
relative_coords_table, relative_position_index, relative_bias = self.relative_bias_initialization(self.window_size, self.num_heads,
self.pretrained_window_size, self.seq_length,
self.no_log)
self.relative_coords_table = relative_coords_table.to(self.relative_coords_table.device)
self.relative_position_index = relative_position_index.to(self.relative_position_index.device)
self.relative_bias = relative_bias.to(self.relative_bias.device)
if self.deploy and self.grid_exists:
input_tensor = input_tensor + self.relative_bias
return input_tensor
if 1:
self.grid_exists = True
relative_position_bias_table = self.cpb_mlp(
self.relative_coords_table
).view(-1, self.num_heads)
relative_position_bias = relative_position_bias_table[
self.relative_position_index.view(-1)
].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1,
) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1
).contiguous() # nH, Wh*Ww, Wh*Ww
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
self.relative_bias = relative_position_bias.unsqueeze(0)
input_tensor = input_tensor + self.relative_bias
return input_tensor
class GRAAttentionBlock(nn.Module):
def __init__(self, window_size, dim_in, dim_out,
num_heads, drop_path=0., qk_scale=None, qkv_bias=False,
norm_layer=nn.LayerNorm, layer_scale=None,
use_swiglu=True,
subsample_ratio=1, dim_ratio=1, conv_base=False,
do_windowing=True, multi_query=False, use_shift=0,
cpb_mlp_hidden=512, conv_groups_ratio=0):
'''
Global Resolution Attention Block , see README for details
Attention with subsampling to get a bigger receptive field for attention
conv_base - use conv2d instead of avgpool2d for downsample / upsample
'''
super().__init__()
self.shift_size=window_size//2 if use_shift else 0
self.do_windowing = do_windowing
self.subsample_ratio = subsample_ratio
if do_windowing:
if conv_base:
self.downsample_op = nn.Conv2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
self.downsample_mixer = nn.Identity()
self.upsample_mixer = nn.Identity()
self.upsample_op = nn.ConvTranspose2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
else:
self.downsample_op = nn.AvgPool2d(kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
self.downsample_mixer = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1) if subsample_ratio > 1 else nn.Identity()
self.upsample_mixer = nn.Upsample(scale_factor=subsample_ratio, mode='nearest') if subsample_ratio > 1 else nn.Identity()
self.upsample_op = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) if subsample_ratio > 1 else nn.Identity()
# in case there is no downsampling conv we want to have it separately
# will help with information propagation between windows
if subsample_ratio == 1:
# conv_groups_ratio=0
self.pre_conv = Conv2d_BN(dim_in, dim_in, kernel_size=3, stride=1, padding=1, groups=max(1,int(conv_groups_ratio*dim_in)), bias=False)
# self.pre_conv = nn.Conv2d(dim_in, dim_in, kernel_size=3, stride=1, padding=1, groups=max(1,int(conv_groups_ratio*dim_in)), bias=False)
# self.pre_conv_act = nn.ReLU6()
#for simplicity:
self.pre_conv_act = nn.Identity()
if conv_groups_ratio == -1:
self.pre_conv = nn.Identity()
self.pre_conv_act = nn.Identity()
self.window_size = window_size
self.norm1 = norm_layer(dim_in)
self.attn = WindowAttention(
dim_in,
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
resolution=window_size,
seq_length=window_size**2, dim_out=dim_in, multi_query=multi_query,
shift_size=self.shift_size, cpb_mlp_hidden=cpb_mlp_hidden)
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1
### mlp layer
mlp_ratio = 4
self.norm2 = norm_layer(dim_in)
mlp_hidden_dim = int(dim_in * mlp_ratio)
activation = nn.GELU if not use_swiglu else SwiGLU
mlp_hidden_dim = int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim
self.mlp = Mlp(in_features=dim_in, hidden_features=mlp_hidden_dim, act_layer=activation, use_swiglu=use_swiglu)
self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1
self.drop_path2=DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
skip_connection = x
attn_mask = None
# in case there is no downsampling conv we want to have it separately
# will help with information propagation
if self.subsample_ratio == 1:
x = self.pre_conv_act(self.pre_conv(x)) + skip_connection
if self.do_windowing:
# performing windowing if required
x = self.downsample_op(x)
x = self.downsample_mixer(x)
if self.window_size>0:
H, W = x.shape[2], x.shape[3]
if self.shift_size > 0 and H>self.window_size and W>self.window_size:
# @swin like cyclic shift, doesnt show better performance
x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(2, 3))
x, pad_hw = window_partition(x, self.window_size)
if self.shift_size > 0 and H>self.window_size and W>self.window_size:
# set atten matrix to have -100 and the top right square
# attn[:, :, :-self.shift_size, -self.shift_size:] = -100.0
# calculate attention mask for SW-MSA
# not used in final version, can be useful for some cases especially for high res
H, W = pad_hw
img_mask = torch.zeros((1, H, W, 1), device=x.device) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
img_mask = img_mask.transpose(1,2).transpose(1,3)
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows[0].view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
# window attention
x = x + self.drop_path1(self.gamma1*self.attn(self.norm1(x), attn_mask=attn_mask)) # or pass H,W
# mlp layer
x = x + self.drop_path2(self.gamma2*self.mlp(self.norm2(x)))
if self.do_windowing:
if self.window_size > 0:
x = window_reverse(x, self.window_size, H, W, pad_hw)
# reverse cyclic shift
if self.shift_size > 0 and H>self.window_size and W>self.window_size:
# @swin like cyclic shift, not tested
x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(2, 3))
x = self.upsample_mixer(x)
x = self.upsample_op(x)
if x.shape[2] != skip_connection.shape[2] or x.shape[3] != skip_connection.shape[3]:
x = torch.nn.functional.pad(x, ( 0, -x.shape[3] + skip_connection.shape[3], 0, -x.shape[2] + skip_connection.shape[2]), mode="reflect")
# need to add skip connection because downsampling and upsampling will break residual connection
# 0.5 is needed to make sure that the skip connection is not too strong
# in case of no downsample / upsample we can show that 0.5 compensates for the residual connection
x = 0.5 * x + 0.5 * skip_connection
return x
class MultiResolutionAttention(nn.Module):
"""
MultiResolutionAttention (MRA) module
The idea is to use multiple attention blocks with different resolution
Feature maps are downsampled / upsampled for each attention block on different blocks
Every attention block supports windowing
"""
def __init__(self, window_size, sr_ratio,
dim, dim_ratio, num_heads,
do_windowing=True,
layer_scale=1e-5, norm_layer=nn.LayerNorm,
drop_path = 0, qkv_bias=False, qk_scale=1.0,
use_swiglu=True, multi_query=False, conv_base=False,
use_shift=0, cpb_mlp_hidden=512, conv_groups_ratio=0) -> None:
"""
Args:
input_resolution: input image resolution
window_size: window size
compression_ratio: compression ratio
max_depth: maximum depth of the GRA module
use_shift: do window shifting
"""
super().__init__()
depth = len(sr_ratio)
self.attention_blocks = nn.ModuleList()
for i in range(depth):
subsample_ratio = sr_ratio[i]
if len(window_size) > i:
window_size_local = window_size[i]
else:
window_size_local = window_size[0]
self.attention_blocks.append(GRAAttentionBlock(window_size=window_size_local,
dim_in=dim, dim_out=dim, num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, norm_layer=norm_layer,
layer_scale=layer_scale, drop_path=drop_path,
use_swiglu=use_swiglu, subsample_ratio=subsample_ratio, dim_ratio=dim_ratio,
do_windowing=do_windowing, multi_query=multi_query, conv_base=conv_base,
use_shift=use_shift, cpb_mlp_hidden=cpb_mlp_hidden, conv_groups_ratio=conv_groups_ratio),
)
def forward(self, x):
for attention_block in self.attention_blocks:
x = attention_block(x)
return x
class Mlp(nn.Module):
"""
Multi-Layer Perceptron (MLP) block
"""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
use_swiglu=True,
drop=0.):
"""
Args:
in_features: input features dimension.
hidden_features: hidden features dimension.
out_features: output features dimension.
act_layer: activation function.
drop: dropout rate.
"""
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features * (2 if use_swiglu else 1), bias=False)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
def forward(self, x):
x_size = x.size()
x = x.view(-1, x_size[-1])
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
x = x.view(x_size)
return x
class Downsample(nn.Module):
"""
Down-sampling block
Pixel Unshuffle is used for down-sampling, works great accuracy - wise but takes 10% more TRT time
"""
def __init__(self,
dim,
shuffle = False,
):
"""
Args:
dim: feature size dimension.
shuffle: idea with
keep_dim: bool argument for maintaining the resolution.
"""
super().__init__()
dim_out = 2 * dim
if shuffle:
self.norm = lambda x: pixel_unshuffle(x, factor=2)
self.reduction = Conv2d_BN(dim*4, dim_out, 1, 1, 0, bias=False)
# pixel unshuffleging works well but doesnt provide any speedup
else:
# removed layer norm for better, in this formulation we are getting 10% better speed
# LayerNorm for high resolution inputs will be a pain as it pools over the entire spatial dimension
# therefore we remove it compared to the original implementation in FasterViTv1
self.norm = nn.Identity()
self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False)
def forward(self, x):
x = self.norm(x)
x = self.reduction(x)
return x
class PatchEmbed(nn.Module):
"""
Patch embedding block
Used to convert image into an initial set of feature maps with lower resolution
"""
def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False):
"""
Args:
in_chans: number of input channels.
in_dim: intermediate feature size dimension to speed up stem.
dim: final stem channel number
shuffle_down: use PixelUnshuffle for down-sampling, effectively increases the receptive field
"""
super().__init__()
# shuffle_down = False
if not shuffle_down:
self.proj = nn.Identity()
self.conv_down = nn.Sequential(
Conv2d_BN(in_chans, in_dim, 3, 2, 1, bias=False),
nn.ReLU(),
Conv2d_BN(in_dim, dim, 3, 2, 1, bias=False),
nn.ReLU()
)
else:
self.proj = lambda x: pixel_unshuffle(x, factor=4)
self.conv_down = nn.Sequential(Conv2d_BN(in_chans*16, dim, 3, 1, 1),
nn.ReLU(),
)
def forward(self, x):
x = self.proj(x)
x = self.conv_down(x)
return x
class ConvBlock(nn.Module):
"""
Convolutional block, used in first couple of stages
Experimented with plan resnet-18 like modules, they are the best in terms of throughput
Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end)
"""
def __init__(self, dim,
drop_path=0.,
layer_scale=None,
kernel_size=3,
):
super().__init__()
self.conv1 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
self.act1 = nn.GELU()
self.conv2 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
self.layer_scale = layer_scale
if layer_scale is not None and type(layer_scale) in [int, float]:
self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
self.layer_scale = True
else:
self.layer_scale = False
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
input = x
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
if self.layer_scale:
x = x * self.gamma.view(1, -1, 1, 1)
x = input + self.drop_path(x)
return x
class WindowAttention(nn.Module):
# Windowed Attention from SwinV2
# use a MLP trick to deal with various input image resolutions, then fold it to improve speed
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, resolution=0,
seq_length=0, dim_out=None, multi_query=False, shift_size=0, cpb_mlp_hidden=512):
# taken from EdgeViT and tweaked with attention bias.
super().__init__()
if not dim_out: dim_out = dim
self.shift_size = shift_size
self.multi_query = multi_query
self.num_heads = num_heads
head_dim = dim // num_heads
self.head_dim = dim // num_heads
self.dim_internal = dim
self.scale = qk_scale or head_dim ** -0.5
if not multi_query:
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
else:
self.qkv = nn.Linear(dim, dim + 2*self.head_dim, bias=qkv_bias)
self.proj = nn.Linear(dim, dim_out, bias=False)
# attention positional bias
self.pos_emb_funct = PosEmbMLPSwinv2D(window_size=[resolution, resolution],
pretrained_window_size=[resolution, resolution],
num_heads=num_heads,
seq_length=seq_length,
cpb_mlp_hidden=cpb_mlp_hidden)
self.resolution = resolution
def forward(self, x, attn_mask = None):
B, N, C = x.shape
if not self.multi_query:
qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
else:
qkv = self.qkv(x)
(q, k, v) = qkv.split([self.dim_internal, self.head_dim, self.head_dim], dim=2)
q = q.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
k = k.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
v = v.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = self.pos_emb_funct(attn)
#add window shift
if attn_mask is not None:
nW = attn_mask.shape[0]
attn = attn.view(B // nW, nW, self.num_heads, N, N) + attn_mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, -1, C)
x = self.proj(x)
return x
class FasterViTLayer(nn.Module):
"""
fastervitlayer
"""
def __init__(self,
dim,
depth,
num_heads,
window_size,
conv=False,
downsample=True,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
norm_layer=nn.LayerNorm,
drop_path=0.,
layer_scale=None,
layer_scale_conv=None,
sr_dim_ratio=1,
sr_ratio=1,
multi_query=False,
use_swiglu=True,
yolo_arch=False,
downsample_shuffle=False,
conv_base=False,
use_shift=False,
cpb_mlp_hidden=512,
conv_groups_ratio=0,
verbose: bool = True,
):
"""
Args:
dim: feature size dimension.
depth: number of layers in each stage.
input_resolution: input image resolution.
window_size: window size in each stage.
downsample: bool argument for down-sampling.
mlp_ratio: MLP ratio.
num_heads: number of heads in each stage.
qkv_bias: bool argument for query, key, value learnable bias.
qk_scale: bool argument to scaling query, key.
drop: dropout rate.
attn_drop: attention dropout rate.
drop_path: drop path rate.
norm_layer: normalization layer.
layer_scale: layer scaling coefficient.
use_shift: SWIN like window shifting for half the window size for every alternating layer (considering multi-resolution)
conv_groups_ratio: group ratio for conv when no subsampling in multi-res attention
"""
super().__init__()
self.conv = conv
self.yolo_arch=False
self.verbose = verbose
if conv:
if not yolo_arch:
self.blocks = nn.ModuleList([
ConvBlock(dim=dim,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
layer_scale=layer_scale_conv)
for i in range(depth)])
self.blocks = nn.Sequential(*self.blocks)
else:
self.blocks = C2f(dim,dim,n=depth,shortcut=True,e=0.5)
self.yolo_arch=True
else:
if not isinstance(window_size, list): window_size = [window_size]
self.window_size = window_size[0]
self.do_single_windowing = True
if not isinstance(sr_ratio, list): sr_ratio = [sr_ratio]
self.sr_ratio = sr_ratio
if any([sr!=1 for sr in sr_ratio]) or len(set(window_size))>1:
self.do_single_windowing = False
do_windowing = True
else:
self.do_single_windowing = True
do_windowing = False
#for v2_2
if conv_groups_ratio != -1:
self.do_single_windowing = False
do_windowing = True
self.blocks = nn.ModuleList()
for i in range(depth):
self.blocks.append(
MultiResolutionAttention(window_size=window_size,
sr_ratio=sr_ratio,
dim=dim,
dim_ratio = sr_dim_ratio,
num_heads=num_heads,
norm_layer=norm_layer,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
layer_scale=layer_scale,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
use_swiglu=use_swiglu,
do_windowing=do_windowing,
multi_query=multi_query,
conv_base=conv_base,
cpb_mlp_hidden=cpb_mlp_hidden,
use_shift =0 if ((not use_shift) or ((i) % 2 == 0)) else True ,
conv_groups_ratio=conv_groups_ratio,
))
self.blocks = nn.Sequential(*self.blocks)
self.transformer = not conv
self.downsample = None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle)
def forward(self, x):
B, C, H, W = x.shape
# do padding for transforemr
interpolate = True
if self.transformer and interpolate:
# Windowed Attention will split feature map into windows with the size of window_size x window_size
# if the resolution is not divisible by window_size, we need to interpolate the feature map
# can be done via padding, but doing so after training hurts the model performance.
# interpolation affects the performance as well, but not as much as padding
if isinstance(self.window_size, list) or isinstance(self.window_size, tuple):
current_max_window_size = max(self.window_size)
else:
current_max_window_size = self.window_size
max_window_size = max([res_upsample*current_max_window_size for res_upsample in self.sr_ratio])
if H % max_window_size != 0 or W % max_window_size != 0:
new_h = int(np.ceil(H/max_window_size)*max_window_size)
new_w = int(np.ceil(W/max_window_size)*max_window_size)
x = F.interpolate(x, size=(new_h, new_w), mode='nearest')
if self.verbose:
warnings.warn(f"Choosen window size is not optimal for given resolution. Interpolation of features maps will be done and it can affect the performance. Max window size is {max_window_size}, feature map size is {H}x{W}, interpolated feature map size is {new_h}x{new_w}.")
if self.transformer and self.do_single_windowing:
H, W = x.shape[2], x.shape[3]
x, pad_hw = window_partition(x, self.window_size)
#run main blocks
x = self.blocks(x)
if self.transformer and self.do_single_windowing:
x = window_reverse(x, self.window_size, H, W, pad_hw)
if self.transformer and interpolate:
#lets keep original resolution, might be not ideal, but for the upsampling tower we need to keep the expected resolution.
x = F.interpolate(x, size=(H, W), mode='nearest')
if self.downsample is None:
return x, x
return self.downsample(x), x # changing to output pre downsampled features
class InterpolateLayer(nn.Module):
def __init__(self, size=None, scale_factor=None, mode='nearest'):
super(InterpolateLayer, self).__init__()
self.size = size
self.scale_factor = scale_factor
self.mode = mode
def forward(self, x):
return F.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode)
class HiResNeck(nn.Module):
"""
The block is used to output dense features from all stages
Otherwise, by default, only the last stage features are returned with FasterViTv2
"""
def __init__(self, dim, depths, neck_start_stage, full_features_head_dim, downsample_enabled):
'''
Hi Resolution neck to support output of high res features that are useful for dense tasks.
depths - total number of layers in the base model
neck_start_stage - when to start the neck, 0 - start from the first stage, 1 - start from the second stage etc.
earlier layers result in higher resolution features at the cost of compute
full_features_head_dim - number of channels in the dense features head
'''
super().__init__()
# create feature projection layers for segmentation output
self.neck_features_proj = nn.ModuleList()
self.neck_start_stage = neck_start_stage
upsample_ratio = 1
for i in range(len(depths)):
level_n_features_output = int(dim * 2 ** i)
if self.neck_start_stage > i: continue
if (upsample_ratio > 1) or full_features_head_dim!=level_n_features_output:
feature_projection = nn.Sequential()
if False:
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) #fast, but worse
feature_projection.add_module("dconv", nn.ConvTranspose2d(level_n_features_output,
full_features_head_dim, kernel_size=upsample_ratio, stride=upsample_ratio))
else:
# B, in_channels, H, W -> B, in_channels, H*upsample_ratio, W*upsample_ratio
# print("upsample ratio", upsample_ratio, level_n_features_output, level_n_features_output)
feature_projection.add_module("upsample", InterpolateLayer(scale_factor=upsample_ratio, mode='nearest'))
feature_projection.add_module("conv1", nn.Conv2d(level_n_features_output, level_n_features_output, kernel_size=3, stride=1, padding=1, groups=level_n_features_output))
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output))
# B, in_channels, H*upsample_ratio, W*upsample_ratio -> B, full_features_head_dim, H*upsample_ratio, W*upsample_ratio
feature_projection.add_module("conv2", nn.Conv2d(level_n_features_output, full_features_head_dim, kernel_size=1, stride=1, padding=0))
else:
feature_projection = nn.Sequential()
self.neck_features_proj.append(feature_projection)
if i>0 and downsample_enabled[i]:
upsample_ratio *= 2
def forward(self, x, il_level=-1, full_features=None):
if self.neck_start_stage > il_level:
return full_features
if full_features is None:
full_features = self.neck_features_proj[il_level - self.neck_start_stage](x)
else:
#upsample torch tensor x to match full_features size, and add to full_features
feature_projection = self.neck_features_proj[il_level - self.neck_start_stage](x)
if feature_projection.shape[2] != full_features.shape[2] or feature_projection.shape[3] != full_features.shape[3]:
feature_projection = torch.nn.functional.pad(feature_projection, ( 0, -feature_projection.shape[3] + full_features.shape[3], 0, -feature_projection.shape[2] + full_features.shape[2]))
full_features = full_features + feature_projection
return full_features
class FasterViT(nn.Module):
"""
FasterViT
"""
def __init__(self,
dim,
in_dim,
depths,
window_size,
mlp_ratio,
num_heads,
drop_path_rate=0.2,
in_chans=3,
num_classes=1000,
qkv_bias=False,
qk_scale=None,
layer_scale=None,
layer_scale_conv=None,
layer_norm_last=False,
sr_ratio = [1, 1, 1, 1],
max_depth = -1,
conv_base=False,
use_swiglu=False,
multi_query=False,
norm_layer=nn.LayerNorm,
drop_uniform=False,
yolo_arch=False,
shuffle_down=False,
downsample_shuffle=False,
return_full_features=False,
full_features_head_dim=128,
neck_start_stage=1,
use_neck=False,
use_shift=False,
cpb_mlp_hidden=512,
conv_groups_ratio=0,
verbose: bool = False,
**kwargs):
"""
Args:
dim: feature size dimension.
depths: number of layers in each stage.
window_size: window size in each stage.
mlp_ratio: MLP ratio.
num_heads: number of heads in each stage.
drop_path_rate: drop path rate.
in_chans: number of input channels.
num_classes: number of classes.
qkv_bias: bool argument for query, key, value learnable bias.
qk_scale: bool argument to scaling query, key.
drop_rate: dropout rate.
attn_drop_rate: attention dropout rate.
norm_layer: normalization layer.
layer_scale: layer scaling coefficient.
return_full_features: output dense features as well as logits
full_features_head_dim: number of channels in the dense features head
neck_start_stage: a stage id to start full feature neck. Model has 4 stages, indix starts with 0
for 224 resolution, the output of the stage before downsample:
stage 0: 56x56, stage 1: 28x28, stage 2: 14x14, stage 3: 7x7
use_neck: even for summarization embedding use neck
use_shift: SWIN like window shifting but without masking attention
conv_groups_ratio: will be used for conv blocks where there is no multires attention,
if 0 then normal conv,
if 1 then channels are independent,
if -1 then no conv at all
"""
super().__init__()
num_features = int(dim * 2 ** (len(depths) - 1))
self.num_classes = num_classes
self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim, shuffle_down=shuffle_down)
# set return_full_features true if we want to return full features from all stages
self.return_full_features = return_full_features
self.use_neck = use_neck
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
if drop_uniform:
dpr = [drop_path_rate for x in range(sum(depths))]
if not isinstance(max_depth, list): max_depth = [max_depth] * len(depths)
self.levels = nn.ModuleList()
for i in range(len(depths)):
conv = True if (i == 0 or i == 1) else False
level = FasterViTLayer(dim=int(dim * 2 ** i),
depth=depths[i],
num_heads=num_heads[i],
window_size=window_size[i],
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
conv=conv,
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
downsample=(i < len(depths) - 1),
layer_scale=layer_scale,
layer_scale_conv=layer_scale_conv,
sr_ratio=sr_ratio[i],
use_swiglu=use_swiglu,
multi_query=multi_query,
norm_layer=norm_layer,
yolo_arch=yolo_arch,
downsample_shuffle=downsample_shuffle,
conv_base=conv_base,
cpb_mlp_hidden=cpb_mlp_hidden,
use_shift=use_shift,
conv_groups_ratio=conv_groups_ratio,
verbose=verbose)
self.levels.append(level)
if self.return_full_features or self.use_neck:
#num_heads
downsample_enabled = [self.levels[i-1].downsample is not None for i in range(len(self.levels))]
self.high_res_neck = HiResNeck(dim, depths, neck_start_stage, full_features_head_dim, downsample_enabled)
self.switched_to_deploy = False
self.norm = LayerNorm2d(num_features) if layer_norm_last else nn.BatchNorm2d(num_features)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, LayerNorm2d):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'rpb'}
def forward_features(self, x):
x = self.patch_embed(x)
full_features = None
for il, level in enumerate(self.levels):
x, pre_downsample_x = level(x)
if self.return_full_features or self.use_neck:
full_features = self.high_res_neck(pre_downsample_x, il, full_features)
# x = self.norm(full_features if (self.return_full_features or self.use_neck) else x)
x = self.norm(x) # new version for
if not self.return_full_features:
return x, None
return x, full_features
def forward(self, x):
x, full_features = self.forward_features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.head(x)
if full_features is not None:
return x, full_features
return x
def switch_to_deploy(self):
'''
A method to perform model self-compression
merges BN into conv layers
converts MLP relative positional bias into precomputed buffers
'''
if not self.switched_to_deploy:
for level in [self.patch_embed, self.levels, self.head]:
for module in level.modules():
if hasattr(module, 'switch_to_deploy'):
module.switch_to_deploy()
self.switched_to_deploy = True
def change_window_size(self, new_window_size):
"""
FasterViT employs windowed attention, which may be sensitive to the choice of this parameter,
especially in cases of uneven partitioning of the feature maps.
FasterViT allows for the adjustment of the window size after training,
making it adaptable to different input image resolutions.
The recommended values for window size based on input resolution are as follows:
Input Resolution | Window Size
224 | 7
256 | 8
386 | 12
512 | 16
Ideally, the window size should be a factor of the input resolution. In the third stage, we divide the resolution by 16, so the window size should be
img_res/16/2
for the third stage and img_res/32 for the last stage. While this can be applied in a brute-force manner, a better way is to do model.change_window_size.
Manual way to change resolution -> model.change_window_size(resolution)
"""
window_size = new_window_size
print(f"Setting window size to {window_size}")
for module in self.modules():
if hasattr(module, "window_size"):
# check if tuple or a number
if isinstance(module.window_size, tuple):
if module.window_size[0] != window_size:
module.window_size = (window_size, window_size)
elif isinstance(module.window_size, list):
if module.window_size[0] != window_size:
module.window_size = [window_size, window_size]
else:
module.window_size = window_size
def set_optimal_window_size(self, image_dim, max_window_size = 16):
"""
Using hand picked window size for various resolutions.
FasterViT employs windowed attention, which may be sensitive to the choice of this parameter,
especially in cases of uneven partitioning of the feature maps.
FasterViT allows for the adjustment of the window size after training,
making it adaptable to different input image resolutions.
The recommended values for window size based on input resolution are as follows:
Input Resolution | Window Size
224 | 7
256 | 8
386 | 12
512 | 16
Ideally, the window size should be a factor of the input resolution. In the third stage, we divide the resolution by 16, so the window size should be
img_res/16/2
for the third stage and img_res/32 for the last stage. While this can be applied in a brute-force manner, a better way is to do model.change_window_size.
Manual way to change resolution -> model.change_window_size(resolution)
"""
# import math
def divisorGenerator(n):
large_divisors = []
for i in range(1, int(math.sqrt(n) + 1)):
if n % i == 0:
yield i
if i*i != n:
large_divisors.append(n / i)
for divisor in reversed(large_divisors):
yield divisor
if isinstance(image_dim, list) or isinstance(image_dim, tuple):
image_dim = min(image_dim)
# we do windowed attention in the 3rd stage for the first time, therefore //16,
# we do subsampled attention with downsample by 2 so need to get //32 actually
# ideally we should rewrite this to be dependent on the structure of the model like what if subsampled is removed etc
all_divisors = np.array(list(divisorGenerator(image_dim//32)))
new_window_size = int(min(all_divisors[all_divisors <= max_window_size][-1], max_window_size))
# for image_dim in [128, 224, 256, 384, 512, 768, 1024]:
# all_divisors = np.array(list(divisorGenerator(image_dim//32)))
# new_window_size = int(min(all_divisors[all_divisors <= max_window_size][-1], max_window_size))
# print(f"Setting window size to {new_window_size} for image resolution {image_dim}")
self.change_window_size(new_window_size = new_window_size)
# 83.44200001953125
@register_model
def fastervit2_small(pretrained=False, **kwargs): #,
model = FasterViT(depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=96,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.2,
sr_ratio=[1, 1, [1, 2], 1],
use_swiglu=False,
downsample_shuffle=False,
yolo_arch=True,
shuffle_down=False,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
# 82.61
@register_model
def fastervit2_tiny(pretrained=False, **kwargs): #,
model = FasterViT(depths=[1, 3, 4, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=80,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.2,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
downsample_shuffle=False,
yolo_arch=True,
shuffle_down=False,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
#'top1', 84.31800001220704
@register_model
def fastervit2_base(pretrained=False, **kwargs):
model = FasterViT(depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=128,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.2,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
#84.39999999267579
@register_model
def fastervit2_base_v1(pretrained=False, **kwargs):
model = FasterViT(depths=[4, 4, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=128,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.2,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
downsample_shuffle=False,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def fastervit2_base_fullres1(pretrained=False, **kwargs):
model = FasterViT(depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=128,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.2,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=1024,
neck_start_stage=2,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def fastervit2_base_fullres2(pretrained=False, **kwargs):
model = FasterViT(depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=128,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.2,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=512,
neck_start_stage=1,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def fastervit2_base_fullres3(pretrained=False, **kwargs):
model = FasterViT(depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=128,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.2,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=256,
neck_start_stage=1,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def fastervit2_base_fullres4(pretrained=False, **kwargs):
model = FasterViT(depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=128,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.2,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=256,
neck_start_stage=2,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def fastervit2_base_fullres5(pretrained=False, **kwargs):
model = FasterViT(depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=128,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.2,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=512,
neck_start_stage=2,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
#84.87
@register_model
def fastervit2_large(pretrained=False, **kwargs):
model = FasterViT(depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=128+64,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.3,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=False,
shuffle_down=False,
cpb_mlp_hidden=64,
conv_base=True,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def fastervit2_large_fullres(pretrained=False, **kwargs):
model = FasterViT(
depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[None, None, [7, 7], 7],
dim=192,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.0,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=1536,
neck_start_stage=2,
**kwargs,
)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def fastervit2_large_fullres_ws8(pretrained=False, **kwargs):
model = FasterViT(
depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[None, None, [8, 8], 8],
dim=192,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.0,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=1536,
neck_start_stage=2,
**kwargs,
)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def fastervit2_large_fullres_ws16(pretrained=False, **kwargs):
model = FasterViT(
depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[None, None, [16, 16], 16],
dim=192,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.0,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=1536,
neck_start_stage=2,
**kwargs,
)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def fastervit2_large_fullres_ws32(pretrained=False, **kwargs):
model = FasterViT(
depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[None, None, [32, 32], 32],
dim=192,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.0,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=1536,
neck_start_stage=2,
**kwargs,
)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
#85.23% top1
@register_model
def fastervit2_xlarge(pretrained=False, **kwargs):
model = FasterViT(depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=128+128+64,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.4,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=False,
shuffle_down=False,
cpb_mlp_hidden=64,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def fastervit2_huge(pretrained=False, **kwargs):
model = FasterViT(depths=[3, 3, 5, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=128+128+128+64,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.2,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
# 81.61
@register_model
def fastervit2_xtiny(pretrained=False, **kwargs): #,
model = FasterViT(depths=[1, 3, 4, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=64,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.1,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
downsample_shuffle=False,
yolo_arch=True,
shuffle_down=False,
cpb_mlp_hidden=64,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
# 80.19
@register_model
def fastervit2_xxtiny(pretrained=False, **kwargs): #,
model = FasterViT(depths=[1, 3, 4, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=48,
in_dim=64,
mlp_ratio=4,
drop_path_rate=0.05,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
downsample_shuffle=False,
yolo_arch=True,
shuffle_down=False,
cpb_mlp_hidden=64,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
# 77.0
def fastervit2_xxxtiny(pretrained=False, **kwargs): #,
model = FasterViT(depths=[1, 3, 4, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=32,
in_dim=32,
mlp_ratio=4,
drop_path_rate=0.0,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
downsample_shuffle=False,
yolo_arch=True,
shuffle_down=False,
cpb_mlp_hidden=64,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def fastervit2_xxxtiny_fullres(pretrained=False, **kwargs):
model = FasterViT(depths=[1, 3, 4, 5],
num_heads=[2, 4, 8, 16],
window_size=[8, 8, [7, 7], 7],
dim=32,
in_dim=32,
mlp_ratio=4,
drop_path_rate=0.0,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
downsample_shuffle=False,
yolo_arch=True,
shuffle_down=False,
cpb_mlp_hidden=64,
use_neck=True,
full_features_head_dim=128,
neck_start_stage=1,
conv_groups_ratio = 1,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def eradio_xxxtiny(pretrained=False, **kwargs): # ,
model = FasterViT(
depths=[1, 3, 4, 5],
num_heads=[2, 4, 8, 16],
window_size=[None, None, [16, 16], 16],
dim=32,
in_dim=32,
mlp_ratio=4,
drop_path_rate=0.0,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
yolo_arch=True,
shuffle_down=False,
conv_base=True,
use_neck=True,
full_features_head_dim=256,
neck_start_stage=2,
**kwargs,
)
if pretrained:
model.load_state_dict(torch.load(pretrained))
return model
@register_model
def eradio_xxxtiny_8x_ws12(pretrained=False, **kwargs):
model = FasterViT(depths=[1, 3, 4, 5],
num_heads=[2, 4, 8, 16],
window_size=[None, None, [12, 12], 12],
dim=32,
in_dim=32,
mlp_ratio=4,
drop_path_rate=0.0,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
downsample_shuffle=False,
yolo_arch=True,
shuffle_down=False,
cpb_mlp_hidden=64,
use_neck=True,
full_features_head_dim=256,
neck_start_stage=2,
conv_groups_ratio = 1,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def eradio_xxxtiny_8x_ws16(pretrained=False, **kwargs):
model = FasterViT(depths=[1, 3, 4, 5],
num_heads=[2, 4, 8, 16],
window_size=[None, None, [16, 16], 16],
dim=32,
in_dim=32,
mlp_ratio=4,
drop_path_rate=0.0,
sr_ratio=[1, 1, [2, 1], 1],
use_swiglu=False,
downsample_shuffle=False,
yolo_arch=True,
shuffle_down=False,
cpb_mlp_hidden=64,
use_neck=True,
full_features_head_dim=256,
neck_start_stage=1,
conv_groups_ratio = 1,
**kwargs)
if pretrained:
model.load_state_dict(torch.load(pretrained)["state_dict"])
return model
@register_model
def eradio(pretrained=False, **kwargs):
return fastervit2_large_fullres_ws16(pretrained=pretrained, **kwargs)
|