File size: 6,616 Bytes
d3b8c8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from typing import Optional, Callable, Union, Tuple, Any, Dict, NamedTuple
import torch
from torch import nn
from timm.models import create_model, VisionTransformer
from .enable_cpe_support import enable_cpe
from .input_conditioner import InputConditioner
# Register extra models
from . import extra_timm_models
from .adaptor_base import AdaptorBase, RadioOutput, AdaptorInput
from . import eradio_model
class Resolution(NamedTuple):
height: int
width: int
class RADIOModel(nn.Module):
def __init__(
self,
model: nn.Module,
input_conditioner: InputConditioner,
patch_size: int,
max_resolution: int,
preferred_resolution: Resolution,
summary_idxs: Optional[torch.Tensor] = None,
window_size: int = None,
adaptors: Dict[str, AdaptorBase] = None,
):
super().__init__()
self.model = model
self.input_conditioner = input_conditioner
if summary_idxs is not None:
self.register_buffer('summary_idxs', summary_idxs)
else:
self.summary_idxs = None
self._preferred_resolution = preferred_resolution
self._patch_size = patch_size
self._max_resolution = max_resolution
self._window_size = window_size
adaptors = adaptors or dict()
self.adaptors = nn.ModuleDict(adaptors)
@property
def num_summary_tokens(self) -> int:
patch_gen = getattr(self.model, "patch_generator", None)
if patch_gen is not None:
return patch_gen.num_skip
elif self.model.global_pool == 'avg':
return 0
return 1
@property
def patch_size(self) -> int:
return self._patch_size
@property
def max_resolution(self) -> int:
return self._max_resolution
@property
def preferred_resolution(self) -> Resolution:
return self._preferred_resolution
@property
def window_size(self) -> int:
return self._window_size
@property
def min_resolution_step(self) -> int:
res = self.patch_size
if self.window_size is not None:
res *= self.window_size
return res
def make_preprocessor_external(self) -> Callable[[torch.Tensor], torch.Tensor]:
ret = self.input_conditioner
self.input_conditioner = nn.Identity()
return ret
def get_nearest_supported_resolution(self, height: int, width: int) -> Resolution:
height = int(round(height / self.min_resolution_step) * self.min_resolution_step)
width = int(round(width / self.min_resolution_step) * self.min_resolution_step)
height = max(height, self.min_resolution_step)
width = max(width, self.min_resolution_step)
return Resolution(height=height, width=width)
def switch_to_deploy(self):
fn = getattr(self.model, 'switch_to_deploy', None)
if fn is not None:
fn()
def forward(self, x: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
x = self.input_conditioner(x)
y = self.model.forward_features(x)
if isinstance(self.model, VisionTransformer):
patch_gen = getattr(self.model, "patch_generator", None)
if patch_gen is not None:
all_summary = y[:, : patch_gen.num_cls_tokens]
if self.summary_idxs is not None:
bb_summary = all_summary[:, self.summary_idxs]
else:
bb_summary = all_summary
all_feat = y[:, patch_gen.num_skip :]
elif self.model.global_pool == "avg":
all_summary = y[:, self.model.num_prefix_tokens :].mean(dim=1)
bb_summary = all_summary
all_feat = y
else:
all_summary = y[:, 0]
bb_summary = all_summary
all_feat = y[:, 1:]
elif isinstance(self.model, eradio_model.FasterViT):
_, f = y
all_feat = f.flatten(2).transpose(1, 2)
all_summary = all_feat.mean(dim=1)
bb_summary = all_summary
elif isinstance(y, (list, tuple)):
all_summary, all_feat = y
bb_summary = all_summary
else:
raise ValueError("Unsupported model type")
all_feat = all_feat.float()
ret = RadioOutput(bb_summary.flatten(1), all_feat).to(torch.float32)
if self.adaptors:
ret = dict(backbone=ret)
for name, adaptor in self.adaptors.items():
if all_summary.ndim == 3:
summary = all_summary[:, adaptor.head_idx]
else:
summary = all_summary
ada_input = AdaptorInput(images=x, summary=summary.float(), features=all_feat)
v = adaptor(ada_input).to(torch.float32)
ret[name] = v
return ret
def create_model_from_args(args) -> nn.Module:
in_chans = 3
if args.in_chans is not None:
in_chans = args.in_chans
elif args.input_size is not None:
in_chans = args.input_size[0]
# Skip weight initialization unless it's explicitly requested.
weight_init = args.model_kwargs.pop("weight_init", "skip")
model = create_model(
args.model,
pretrained=args.pretrained,
in_chans=in_chans,
num_classes=args.num_classes,
drop_rate=args.drop,
drop_path_rate=args.drop_path,
drop_block_rate=args.drop_block,
global_pool=args.gp,
bn_momentum=args.bn_momentum,
bn_eps=args.bn_eps,
scriptable=args.torchscript,
checkpoint_path=args.initial_checkpoint,
weight_init=weight_init,
**args.model_kwargs,
)
assert (
not args.cls_token_per_teacher or args.cpe_max_size is not None
), "CPE must be enabled for multiple CLS tokens!"
if args.cpe_max_size is not None:
enable_cpe(
model,
args.cpe_max_size,
num_cls_tokens=len(args.teachers) if args.cls_token_per_teacher else 1,
register_multiple=args.register_multiple,
)
return model
|