gheinrich commited on
Commit
d25a3d2
1 Parent(s): c7e6e12

Upload model

Browse files
Files changed (1) hide show
  1. hf_model.py +6 -11
hf_model.py CHANGED
@@ -23,18 +23,13 @@ from .model import create_model_from_args
23
  from .input_conditioner import get_default_conditioner, InputConditioner
24
 
25
 
26
- resource_map = {
27
- 'radio_v1': 'https://huggingface.co/nvidia/RADIO/raw/main/radio_v1.pth.tar'
28
- }
29
-
30
-
31
  class RADIOConfig(PretrainedConfig):
32
  """Pretrained Hugging Face configuration for RADIO models."""
33
 
34
  def __init__(
35
  self,
36
  args: Optional[dict] = None,
37
- version: Optional[str]="v1",
38
  return_summary: Optional[bool] = True,
39
  return_spatial_features: Optional[bool] = True,
40
  **kwargs,
@@ -68,12 +63,12 @@ class RADIOModel(PreTrainedModel):
68
  if isinstance(y, (list, tuple)):
69
  summary, all_feat = y
70
  elif isinstance(self.model, VisionTransformer):
71
- patch_gen = getattr(self.model, 'patch_generator', None)
72
  if patch_gen is not None:
73
- summary = y[:, :patch_gen.num_cls_tokens].flatten(1)
74
- all_feat = y[:, patch_gen.num_skip:]
75
- elif self.model.global_pool == 'avg':
76
- summary = y[:, self.model.num_prefix_tokens:].mean(dim=1)
77
  all_feat = y
78
  else:
79
  summary = y[:, 0]
 
23
  from .input_conditioner import get_default_conditioner, InputConditioner
24
 
25
 
 
 
 
 
 
26
  class RADIOConfig(PretrainedConfig):
27
  """Pretrained Hugging Face configuration for RADIO models."""
28
 
29
  def __init__(
30
  self,
31
  args: Optional[dict] = None,
32
+ version: Optional[str] = "v1",
33
  return_summary: Optional[bool] = True,
34
  return_spatial_features: Optional[bool] = True,
35
  **kwargs,
 
63
  if isinstance(y, (list, tuple)):
64
  summary, all_feat = y
65
  elif isinstance(self.model, VisionTransformer):
66
+ patch_gen = getattr(self.model, "patch_generator", None)
67
  if patch_gen is not None:
68
+ summary = y[:, : patch_gen.num_cls_tokens].flatten(1)
69
+ all_feat = y[:, patch_gen.num_skip :]
70
+ elif self.model.global_pool == "avg":
71
+ summary = y[:, self.model.num_prefix_tokens :].mean(dim=1)
72
  all_feat = y
73
  else:
74
  summary = y[:, 0]