File size: 5,022 Bytes
d87ad8d ec37e0f a032d63 ec37e0f d87ad8d ec37e0f b0fb41a ec37e0f 8741b8f ec37e0f f1c782b ec37e0f b0fb41a ec37e0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
language:
- en
library_name: nemo
tags:
- text generation
- pytorch
- causal-lm
license: llama2
---
# SteerLM Llama-2 13B
<style>
img {
display: inline;
}
</style>
|[![Model architecture](https://img.shields.io/badge/Model%20Arch-Transformer%20Decoder-green)](#model-architecture)|[![Model size](https://img.shields.io/badge/Params-13B-green)](#model-architecture)|[![Language](https://img.shields.io/badge/Language-Multilingual-green)](#datasets)
## Model Description
SteerLM Llama-2 is a 13 billion parameter generative language model based on the open-source Llama-2 architecture. It has been customized using the SteerLM method developed by NVIDIA to allow for user control of model outputs during inference.
Key capabilities enabled by SteerLM:
- Dynamic steering of responses by specifying desired attributes like quality, helpfulness, and toxicity
- Simplified training compared to RLHF techniques like fine-tuning and bootstrapping
## Model Architecture and Training
The SteerLM method involves the following key steps:
1. Train an attribute prediction model on human annotated data to evaluate response quality
2. Use this model to annotate diverse datasets and enrich training data
3. Perform conditioned fine-tuning to align responses with specified combinations of attributes
4. (Optionally) Bootstrap training through model sampling and further fine-tuning
SteerLM Llama-2 applies this technique on top of the Llama-2 architecture. It was pretrained on internet-scale data and then customized using [OASST](https://huggingface.co/datasets/OpenAssistant/oasst1) and [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf) data.
## Getting started
To use SteerLM Llama-2, follow these steps:
1. You will need to install NVIDIA Apex and [NeMo](https://github.com/NVIDIA/NeMo).
```
git clone https://github.com/NVIDIA/apex.git
cd apex
git checkout 03c9d80ed54c0eaa5b581bf42ceca3162f085327
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_layer_norm" --global-option="--distributed_adam" --global-option="--deprecated_fused_adam" ./
```
```
pip install nemo_toolkit['nlp']==1.17.0
```
Alternatively, you can use NVIDIA NeMo Framework training docker container with all dependencies pre-installed.
2. Launch eval server
```
git clone https://github.com/NVIDIA/NeMo.git
cd NeMo/examples/nlp/language_modeling
git checkout v1.17.0
python megatron_gpt_eval.py gpt_model_file=LLAMA2-13B-SteerLM.nemo trainer.precision=16 server=True tensor_model_parallel_size=4 trainer.devices=1 pipeline_model_parallel_split_rank=0
```
3. Send prompts to your model!
```python
import json
import requests
def get_answer(question, max_tokens, values, eval_port='1427'):
prompt = f"""<extra_id_0>System
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
<extra_id_1>User
{question}
<extra_id_1>Assistant
<extra_id_2>{values}
"""
prompts = [prompt]
data = {
"sentences": prompts,
"tokens_to_generate": max_tokens,
"top_k": 1,
'greedy': True,
'end_strings': ["<extra_id_1>", "quality:", "quality:9", "quality:0"]
}
url = f"http://localhost:{eval_port}/generate"
response = requests.put(url, json=data)
json_response = response.json()
response_sentence = json_response['sentences'][0][len(prompt):]
return response_sentence
def encode_labels(labels):
items = []
for key in labels:
value = labels[key]
items.append(f'{key}:{value}')
return ','.join(items)
values = OrderedDict([
('quality', 9),
('toxicity', 0),
('humor', 0),
('creativity', 0),
('violence', 0),
('helpfulness', 9),
('not_appropriate', 0),
])
values = encode_labels(values)
question = """Where and when did techno music originate?"""
print(get_answer(question, 4096, values))
```
## Evaluation results
[MT-bench](https://arxiv.org/abs/2306.05685) evaluation results:
|Category | score|
|---|---|
|total| 6.13|
|writing | 7.8|
|roleplay | 8.15|
|extraction | 5.52|
|stem | 8.43|
|humanities | 9.02|
|reasoning | 4.95|
|math | 2.15|
|coding | 3.0|
## Limitations
The model was trained on the data originally crawled from the Internet. This data contains toxic language and societal biases. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts.
We did not perform any bias/toxicity removal or model alignment on this checkpoint.
## License
- Llama 2 is licensed under the [LLAMA 2 Community License](https://ai.meta.com/llama/license/), Copyright © Meta Platforms, Inc. All Rights Reserved.
- Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the [Acceptable Use Policy](https://ai.meta.com/llama/use-policy) for the Llama Materials. |