vnoroozi commited on
Commit
af174a3
1 Parent(s): 8d5a88b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +249 -0
README.md CHANGED
@@ -1,3 +1,252 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ library_name: nemo
5
+ datasets:
6
+ - librispeech_asr
7
+ - fisher_corpus
8
+ - Switchboard-1
9
+ - WSJ-0
10
+ - WSJ-1
11
+ - National Singapore Corpus Part 1
12
+ - National Singapore Corpus Part 6
13
+ - vctk
14
+ - VoxPopuli (EN)
15
+ - Europarl-ASR (EN)
16
+ - Multilingual LibriSpeech (2000 hours)
17
+ - mozilla-foundation/common_voice_8_0
18
+ - MLCommons/peoples_speech
19
+ thumbnail: null
20
+ tags:
21
+ - automatic-speech-recognition
22
+ - speech
23
+ - audio
24
+ - Transducer
25
+ - Conformer
26
+ - Transformer
27
+ - pytorch
28
+ - NeMo
29
+ - hf-asr-leaderboard
30
  license: cc-by-4.0
31
+ widget:
32
+ - example_title: Librispeech sample 1
33
+ src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
34
+ - example_title: Librispeech sample 2
35
+ src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
36
+ model-index:
37
+ - name: stt_en_conformer_transducer_large
38
+ results:
39
+ - task:
40
+ name: Automatic Speech Recognition
41
+ type: automatic-speech-recognition
42
+ dataset:
43
+ name: LibriSpeech (clean)
44
+ type: librispeech_asr
45
+ config: clean
46
+ split: test
47
+ args:
48
+ language: en
49
+ metrics:
50
+ - name: Test WER
51
+ type: wer
52
+ value: 1.7
53
+ - task:
54
+ type: Automatic Speech Recognition
55
+ name: automatic-speech-recognition
56
+ dataset:
57
+ name: LibriSpeech (other)
58
+ type: librispeech_asr
59
+ config: other
60
+ split: test
61
+ args:
62
+ language: en
63
+ metrics:
64
+ - name: Test WER
65
+ type: wer
66
+ value: 3.7
67
+ - task:
68
+ type: Automatic Speech Recognition
69
+ name: automatic-speech-recognition
70
+ dataset:
71
+ name: Multilingual LibriSpeech
72
+ type: facebook/multilingual_librispeech
73
+ config: english
74
+ split: test
75
+ args:
76
+ language: en
77
+ metrics:
78
+ - name: Test WER
79
+ type: wer
80
+ value: 5.8
81
+ - task:
82
+ type: Automatic Speech Recognition
83
+ name: automatic-speech-recognition
84
+ dataset:
85
+ name: Mozilla Common Voice 8.0
86
+ type: mozilla-foundation/common_voice_8_0
87
+ config: en
88
+ split: test
89
+ args:
90
+ language: en
91
+ metrics:
92
+ - name: Test WER
93
+ type: wer
94
+ value: 7.8
95
+ - task:
96
+ type: Automatic Speech Recognition
97
+ name: automatic-speech-recognition
98
+ dataset:
99
+ name: Wall Street Journal 92
100
+ type: wsj_0
101
+ args:
102
+ language: en
103
+ metrics:
104
+ - name: Test WER
105
+ type: wer
106
+ value: 1.5
107
+ - task:
108
+ type: Automatic Speech Recognition
109
+ name: automatic-speech-recognition
110
+ dataset:
111
+ name: Wall Street Journal 93
112
+ type: wsj_1
113
+ args:
114
+ language: en
115
+ metrics:
116
+ - name: Test WER
117
+ type: wer
118
+ value: 2.1
119
+ - task:
120
+ type: Automatic Speech Recognition
121
+ name: automatic-speech-recognition
122
+ dataset:
123
+ name: National Singapore Corpus
124
+ type: nsc_part_1
125
+ args:
126
+ language: en
127
+ metrics:
128
+ - name: Test WER
129
+ type: wer
130
+ value: 5.9
131
  ---
132
+
133
+ # NVIDIA Conformer-Transducer Large (en-US)
134
+
135
+ <style>
136
+ img {
137
+ display: inline;
138
+ }
139
+ </style>
140
+
141
+ | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture)
142
+ | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture)
143
+ | [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets)
144
+
145
+
146
+ This model transcribes speech in lower case English alphabet along with spaces and apostrophes.
147
+ It is a large version of Conformer-Transducer (around 120M parameters) model.
148
+ See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details.
149
+
150
+ ## NVIDIA NeMo: Training
151
+
152
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
153
+ ```
154
+ pip install nemo_toolkit['all']
155
+ ```
156
+
157
+ ## How to Use this Model
158
+
159
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
160
+
161
+ ### Automatically instantiate the model
162
+
163
+ ```python
164
+ import nemo.collections.asr as nemo_asr
165
+ asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_large")
166
+ ```
167
+
168
+ ### Transcribing using Python
169
+ First, let's get a sample
170
+ ```
171
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
172
+ ```
173
+ Then simply do:
174
+ ```
175
+ asr_model.transcribe(['2086-149220-0033.wav'])
176
+ ```
177
+
178
+ ### Transcribing many audio files
179
+
180
+ ```shell
181
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
182
+ pretrained_name="nvidia/stt_en_conformer_transducer_large"
183
+ audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
184
+ ```
185
+
186
+ ### Input
187
+
188
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
189
+
190
+ ### Output
191
+
192
+ This model provides transcribed speech as a string for a given audio sample.
193
+
194
+ ## Model Architecture
195
+
196
+ Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html).
197
+
198
+ ## Training
199
+
200
+ The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_transducer_bpe.yaml).
201
+
202
+ The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
203
+
204
+ ### Datasets
205
+
206
+ All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of several thousand hours of English speech:
207
+
208
+ - Librispeech 960 hours of English speech
209
+ - Fisher Corpus
210
+ - Switchboard-1 Dataset
211
+ - WSJ-0 and WSJ-1
212
+ - National Speech Corpus (Part 1, Part 6)
213
+ - VCTK
214
+ - VoxPopuli (EN)
215
+ - Europarl-ASR (EN)
216
+ - Multilingual Librispeech (MLS EN) - 2,000 hrs subset
217
+ - Mozilla Common Voice (v8.0)
218
+ - People's Speech - 12,000 hrs subset
219
+
220
+ Note: older versions of the model may have trained on smaller set of datasets.
221
+
222
+ ## Performance
223
+
224
+ The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
225
+
226
+ | Version | Tokenizer | Vocabulary Size | LS test-other | LS test-clean | WSJ Eval92 | WSJ Dev93 | NSC Part 1 | MLS Test | MCV Test 6.1 | MCV Test 8.0 | Train Dataset |
227
+ |---------|-----------------------|-----------------|---------------|---------------|------------|-----------|-----|-------|------|----|------|
228
+ | 1.10.0 | SentencePiece Unigram | 1024 | 3.7 | 1.7 | 1.5 | 2.1 | 5.9 | 5.8 | 6.5 | 7.8 | NeMo ASRSET 3.0 |
229
+
230
+ ## Limitations
231
+ Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
232
+
233
+ ## NVIDIA Riva: Deployment
234
+
235
+ [NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
236
+ Additionally, Riva provides:
237
+
238
+ * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
239
+ * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
240
+ * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
241
+
242
+ Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).
243
+ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
244
+
245
+ ## References
246
+ [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
247
+ [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
248
+ [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
249
+
250
+ ## Licence
251
+
252
+ License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.