--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-v3-large-test-231 results: [] --- # deberta-v3-large-test-231 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0695 - Precision: 0.9900 - Recall: 0.9900 - F1: 0.9900 - Accuracy: 0.9900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0663 | 1.0 | 1994 | 0.0489 | 0.9878 | 0.9878 | 0.9878 | 0.9878 | | 0.0383 | 2.0 | 3988 | 0.0584 | 0.9850 | 0.9850 | 0.9850 | 0.9850 | | 0.0138 | 3.0 | 5982 | 0.0783 | 0.9870 | 0.9870 | 0.9870 | 0.9870 | | 0.0026 | 4.0 | 7976 | 0.0691 | 0.9878 | 0.9878 | 0.9878 | 0.9878 | | 0.0016 | 5.0 | 9970 | 0.0695 | 0.9900 | 0.9900 | 0.9900 | 0.9900 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1