update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: kobigbird-bert-base-finetuned-klue
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# kobigbird-bert-base-finetuned-klue
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 1.0743
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 5e-05
|
36 |
+
- train_batch_size: 8
|
37 |
+
- eval_batch_size: 8
|
38 |
+
- seed: 42
|
39 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
+
- lr_scheduler_type: linear
|
41 |
+
- num_epochs: 20
|
42 |
+
|
43 |
+
### Training results
|
44 |
+
|
45 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
46 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
47 |
+
| 4.7262 | 0.17 | 500 | 3.1922 |
|
48 |
+
| 2.2239 | 0.35 | 1000 | 1.5877 |
|
49 |
+
| 1.602 | 0.52 | 1500 | 1.4144 |
|
50 |
+
| 1.3619 | 0.69 | 2000 | 1.2172 |
|
51 |
+
| 1.2611 | 0.86 | 2500 | 1.0703 |
|
52 |
+
| 1.1354 | 1.04 | 3000 | 1.0719 |
|
53 |
+
| 0.9851 | 1.21 | 3500 | 1.0052 |
|
54 |
+
| 0.9205 | 1.38 | 4000 | 1.0223 |
|
55 |
+
| 0.8753 | 1.55 | 4500 | 0.9671 |
|
56 |
+
| 0.8751 | 1.73 | 5000 | 1.0368 |
|
57 |
+
| 0.8535 | 1.9 | 5500 | 0.9146 |
|
58 |
+
| 0.7376 | 2.07 | 6000 | 1.0462 |
|
59 |
+
| 0.6256 | 2.24 | 6500 | 1.0606 |
|
60 |
+
| 0.6041 | 2.42 | 7000 | 1.1533 |
|
61 |
+
| 0.6403 | 2.59 | 7500 | 1.0871 |
|
62 |
+
| 0.6208 | 2.76 | 8000 | 1.0743 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.18.0
|
68 |
+
- Pytorch 1.10.0+cu111
|
69 |
+
- Datasets 2.0.0
|
70 |
+
- Tokenizers 0.11.6
|