---
library_name: peft
datasets:
- ohtaman/kokkai2022
language:
- ja
pipeline_tag: text-generation
inference: false
license: apache-2.0
---
This model learned the proceedings of the Japanese parliament in 2022.
The [dataset](https://huggingface.co/datasets/ohtaman/kokkai2022) is collected using
[National Diet Library's Search API](https://kokkai.ndl.go.jp/api.html).
example input:
```
# question
麻生太郎
増税が必要とお考えでしょうか?
# answer
鈴木 俊一
```
output:
```
「財政民主主義」のためには、国庫負担を引き下げるならば、企業の賃上げを実現するためには、消費者物価高対策を行っていく。
今回の補正予算案では、二・五兆円の経済対策を盛り込んでおります。特に、小売店等に向けた新規就業支援事業、零細化対策、マイクロプラットフォーム構築事業、地域活性化事業、公共施設整備事業、交通基盤整備事業、都道府県単位の自動車検査事業、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、地方創生臨時交付金、
```
## Training procedure
Finetune [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) with [ohtaman/kokkai2022](https://huggingface.co/datasets/ohtaman/kokkai2022)(currentry, private) dataset with LoRA.
The training parameters are
|param|value|
|:--:|:--:|
|r| 4|
|lora_alpha| 2|
|target_modules|- query_key_value
- dense
- dense_h_to_4h
- dense_4h_to_h|
|lora_dropout| 0.01|
|bias| None|
|task_type| CAUSAL_LM|
|optimizer|AdamW|
|lr|4e-4|
the prompt template is as follows:
```
# question
{questioner}
{question_text}
# answer
{answerer}
{answer_text}
```
### Example Notebook (Colab)
[Colaboratory](https://colab.research.google.com/drive/1oWHM5_DbltvrD27oZL4-fumXChkMkrC5?usp=sharing) (Pro is not needed.)
### Example Code
```python
tokenizer = transformers.AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
base_model = transformers.AutoModelForCausalLM.from_pretrained(base_model_name, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
peft_model = peft.PeftModelForCausalLM.from_pretrained(base_model, peft_model_name, torch_dtype=torch.bfloat16)
prompt = "# question\n麻生太郎\n\n増税すべきとお考えか?\n# answer\n岸田文雄\n\n〔内閣総理大臣岸田文雄君登壇〕"
input_tokens = tokenizer(prompt, return_tensors="pt").to(peft_model.device)
input_length = input_tokens.input_ids.shape[1]
with torch.no_grad():
outputs = peft_model.generate(
input_ids=input_tokens["input_ids"],
attention_mask=input_tokens["attention_mask"],
return_dict_in_generate=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
max_length=max_length,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.05,
)
output_tokens = outputs.sequences[0, input_length:-1]
print(tokenizer.decode(output_tokens))
```