tf_babylm_1 / structformer.py
omarmomen's picture
add model
c799e10
# coding=utf-8
# Copyright 2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""StructFormer and transformer model."""
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from transformers import PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import MaskedLMOutput, SequenceClassifierOutput
def _get_activation_fn(activation):
"""Get specified activation function."""
if activation == "relu":
return nn.ReLU()
elif activation == "gelu":
return nn.GELU()
elif activation == "leakyrelu":
return nn.LeakyReLU()
raise RuntimeError(
"activation should be relu/gelu, not {}".format(activation))
class Conv1d(nn.Module):
"""1D convolution layer."""
def __init__(self, hidden_size, kernel_size, dilation=1):
"""Initialization.
Args:
hidden_size: dimension of input embeddings
kernel_size: convolution kernel size
dilation: the spacing between the kernel points
"""
super(Conv1d, self).__init__()
if kernel_size % 2 == 0:
padding = (kernel_size // 2) * dilation
self.shift = True
else:
padding = ((kernel_size - 1) // 2) * dilation
self.shift = False
self.conv = nn.Conv1d(
hidden_size,
hidden_size,
kernel_size,
padding=padding,
dilation=dilation)
def forward(self, x):
"""Compute convolution.
Args:
x: input embeddings
Returns:
conv_output: convolution results
"""
if self.shift:
return self.conv(x.transpose(1, 2)).transpose(1, 2)[:, 1:]
else:
return self.conv(x.transpose(1, 2)).transpose(1, 2)
class MultiheadAttention(nn.Module):
"""Multi-head self-attention layer."""
def __init__(self,
embed_dim,
num_heads,
dropout=0.,
bias=True,
v_proj=True,
out_proj=True,
relative_bias=True):
"""Initialization.
Args:
embed_dim: dimension of input embeddings
num_heads: number of self-attention heads
dropout: dropout rate
bias: bool, indicate whether include bias for linear transformations
v_proj: bool, indicate whether project inputs to new values
out_proj: bool, indicate whether project outputs to new values
relative_bias: bool, indicate whether use a relative position based
attention bias
"""
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.drop = nn.Dropout(dropout)
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, ("embed_dim must be "
"divisible by "
"num_heads")
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
if v_proj:
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
else:
self.v_proj = nn.Identity()
if out_proj:
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
else:
self.out_proj = nn.Identity()
if relative_bias:
self.relative_bias = nn.Parameter(torch.zeros((self.num_heads, 512)))
else:
self.relative_bias = None
self._reset_parameters()
def _reset_parameters(self):
"""Initialize attention parameters."""
init.xavier_uniform_(self.q_proj.weight)
init.constant_(self.q_proj.bias, 0.)
init.xavier_uniform_(self.k_proj.weight)
init.constant_(self.k_proj.bias, 0.)
if isinstance(self.v_proj, nn.Linear):
init.xavier_uniform_(self.v_proj.weight)
init.constant_(self.v_proj.bias, 0.)
if isinstance(self.out_proj, nn.Linear):
init.xavier_uniform_(self.out_proj.weight)
init.constant_(self.out_proj.bias, 0.)
def forward(self, query, key_padding_mask=None, attn_mask=None):
"""Compute multi-head self-attention.
Args:
query: input embeddings
key_padding_mask: 3D mask that prevents attention to certain positions
attn_mask: 3D mask that rescale the attention weight at each position
Returns:
attn_output: self-attention output
"""
length, bsz, embed_dim = query.size()
assert embed_dim == self.embed_dim
head_dim = embed_dim // self.num_heads
assert head_dim * self.num_heads == embed_dim, ("embed_dim must be "
"divisible by num_heads")
scaling = float(head_dim)**-0.5
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
q = q * scaling
if attn_mask is not None:
assert list(attn_mask.size()) == [bsz * self.num_heads,
query.size(0), query.size(0)]
q = q.contiguous().view(length, bsz * self.num_heads,
head_dim).transpose(0, 1)
k = k.contiguous().view(length, bsz * self.num_heads,
head_dim).transpose(0, 1)
v = v.contiguous().view(length, bsz * self.num_heads,
head_dim).transpose(0, 1)
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
assert list(
attn_output_weights.size()) == [bsz * self.num_heads, length, length]
if self.relative_bias is not None:
pos = torch.arange(length, device=query.device)
relative_pos = torch.abs(pos[:, None] - pos[None, :]) + 256
relative_pos = relative_pos[None, :, :].expand(bsz * self.num_heads, -1,
-1)
relative_bias = self.relative_bias.repeat_interleave(bsz, dim=0)
relative_bias = relative_bias[:, None, :].expand(-1, length, -1)
relative_bias = torch.gather(relative_bias, 2, relative_pos)
attn_output_weights = attn_output_weights + relative_bias
if key_padding_mask is not None:
attn_output_weights = attn_output_weights + key_padding_mask
if attn_mask is None:
attn_output_weights = torch.softmax(attn_output_weights, dim=-1)
else:
attn_output_weights = torch.sigmoid(attn_output_weights) * attn_mask
attn_output_weights = self.drop(attn_output_weights)
attn_output = torch.bmm(attn_output_weights, v)
assert list(attn_output.size()) == [bsz * self.num_heads, length, head_dim]
attn_output = attn_output.transpose(0, 1).contiguous().view(
length, bsz, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output
class TransformerLayer(nn.Module):
"""TransformerEncoderLayer is made up of self-attn and feedforward network."""
def __init__(self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
dropatt=0.1,
activation="leakyrelu",
relative_bias=True):
"""Initialization.
Args:
d_model: dimension of inputs
nhead: number of self-attention heads
dim_feedforward: dimension of hidden layer in feedforward layer
dropout: dropout rate
dropatt: drop attention rate
activation: activation function
relative_bias: bool, indicate whether use a relative position based
attention bias
"""
super(TransformerLayer, self).__init__()
self.self_attn = MultiheadAttention(
d_model, nhead, dropout=dropatt, relative_bias=relative_bias)
# Implementation of Feedforward model
self.feedforward = nn.Sequential(
nn.LayerNorm(d_model), nn.Linear(d_model, dim_feedforward),
_get_activation_fn(activation), nn.Dropout(dropout),
nn.Linear(dim_feedforward, d_model))
self.norm = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.nhead = nhead
def forward(self, src, attn_mask=None, key_padding_mask=None):
"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
attn_mask: the mask for the src sequence (optional).
key_padding_mask: the mask for the src keys per batch (optional).
Returns:
src3: the output of transformer layer, share the same shape as src.
"""
src2 = self.self_attn(
self.norm(src), attn_mask=attn_mask, key_padding_mask=key_padding_mask)
src2 = src + self.dropout1(src2)
src3 = self.feedforward(src2)
src3 = src2 + self.dropout2(src3)
return src3
def cumprod(x, reverse=False, exclusive=False):
"""cumulative product."""
if reverse:
x = x.flip([-1])
if exclusive:
x = F.pad(x[:, :, :-1], (1, 0), value=1)
cx = x.cumprod(-1)
if reverse:
cx = cx.flip([-1])
return cx
def cumsum(x, reverse=False, exclusive=False):
"""cumulative sum."""
bsz, _, length = x.size()
device = x.device
if reverse:
if exclusive:
w = torch.ones([bsz, length, length], device=device).tril(-1)
else:
w = torch.ones([bsz, length, length], device=device).tril(0)
cx = torch.bmm(x, w)
else:
if exclusive:
w = torch.ones([bsz, length, length], device=device).triu(1)
else:
w = torch.ones([bsz, length, length], device=device).triu(0)
cx = torch.bmm(x, w)
return cx
def cummin(x, reverse=False, exclusive=False, max_value=1e9):
"""cumulative min."""
if reverse:
if exclusive:
x = F.pad(x[:, :, 1:], (0, 1), value=max_value)
x = x.flip([-1]).cummin(-1)[0].flip([-1])
else:
if exclusive:
x = F.pad(x[:, :, :-1], (1, 0), value=max_value)
x = x.cummin(-1)[0]
return x
class Transformer(nn.Module):
"""Transformer model."""
def __init__(self,
hidden_size,
nlayers,
ntokens,
nhead=8,
dropout=0.1,
dropatt=0.1,
relative_bias=True,
pos_emb=False,
pad=0):
"""Initialization.
Args:
hidden_size: dimension of inputs and hidden states
nlayers: number of layers
ntokens: number of output categories
nhead: number of self-attention heads
dropout: dropout rate
dropatt: drop attention rate
relative_bias: bool, indicate whether use a relative position based
attention bias
pos_emb: bool, indicate whether use a learnable positional embedding
pad: pad token index
"""
super(Transformer, self).__init__()
self.drop = nn.Dropout(dropout)
self.emb = nn.Embedding(ntokens, hidden_size)
if pos_emb:
self.pos_emb = nn.Embedding(500, hidden_size)
self.layers = nn.ModuleList([
TransformerLayer(hidden_size, nhead, hidden_size * 4, dropout,
dropatt=dropatt, relative_bias=relative_bias)
for _ in range(nlayers)])
self.norm = nn.LayerNorm(hidden_size)
self.output_layer = nn.Linear(hidden_size, ntokens)
self.output_layer.weight = self.emb.weight
self.init_weights()
self.nlayers = nlayers
self.nhead = nhead
self.ntokens = ntokens
self.hidden_size = hidden_size
self.pad = pad
def init_weights(self):
"""Initialize token embedding and output bias."""
initrange = 0.1
self.emb.weight.data.uniform_(-initrange, initrange)
if hasattr(self, 'pos_emb'):
self.pos_emb.weight.data.uniform_(-initrange, initrange)
self.output_layer.bias.data.fill_(0)
def visibility(self, x, device):
"""Mask pad tokens."""
visibility = (x != self.pad).float()
visibility = visibility[:, None, :].expand(-1, x.size(1), -1)
visibility = torch.repeat_interleave(visibility, self.nhead, dim=0)
return visibility.log()
def encode(self, x, pos):
"""Standard transformer encode process."""
h = self.emb(x)
if hasattr(self, 'pos_emb'):
h = h + self.pos_emb(pos)
h_list = []
visibility = self.visibility(x, x.device)
for i in range(self.nlayers):
h_list.append(h)
h = self.layers[i](
h.transpose(0, 1), key_padding_mask=visibility).transpose(0, 1)
output = h
h_array = torch.stack(h_list, dim=2)
return output, h_array
def forward(self, x, pos):
"""Pass the input through the encoder layer.
Args:
x: input tokens (required).
pos: position for each token (optional).
Returns:
output: probability distributions for missing tokens.
state_dict: parsing results and raw output
"""
batch_size, length = x.size()
raw_output, _ = self.encode(x, pos)
raw_output = self.norm(raw_output)
raw_output = self.drop(raw_output)
output = self.output_layer(raw_output)
return output.view(batch_size * length, -1), {'raw_output': raw_output,}
class StructFormer(Transformer):
"""StructFormer model."""
def __init__(self,
hidden_size,
nlayers,
ntokens,
nhead=8,
dropout=0.1,
dropatt=0.1,
relative_bias=False,
pos_emb=False,
pad=0,
n_parser_layers=4,
conv_size=9,
relations=('head', 'child'),
weight_act='softmax'):
"""Initialization.
Args:
hidden_size: dimension of inputs and hidden states
nlayers: number of layers
ntokens: number of output categories
nhead: number of self-attention heads
dropout: dropout rate
dropatt: drop attention rate
relative_bias: bool, indicate whether use a relative position based
attention bias
pos_emb: bool, indicate whether use a learnable positional embedding
pad: pad token index
n_parser_layers: number of parsing layers
conv_size: convolution kernel size for parser
relations: relations that are used to compute self attention
weight_act: relations distribution activation function
"""
super(StructFormer, self).__init__(
hidden_size,
nlayers,
ntokens,
nhead=nhead,
dropout=dropout,
dropatt=dropatt,
relative_bias=relative_bias,
pos_emb=pos_emb,
pad=pad)
self.parser_layers = nn.ModuleList([
nn.Sequential(Conv1d(hidden_size, conv_size),
nn.LayerNorm(hidden_size, elementwise_affine=False),
nn.Tanh()) for i in range(n_parser_layers)])
self.distance_ff = nn.Sequential(
Conv1d(hidden_size, 2),
nn.LayerNorm(hidden_size, elementwise_affine=False), nn.Tanh(),
nn.Linear(hidden_size, 1))
self.height_ff = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.LayerNorm(hidden_size, elementwise_affine=False), nn.Tanh(),
nn.Linear(hidden_size, 1))
n_rel = len(relations)
self._rel_weight = nn.Parameter(torch.zeros((nlayers, nhead, n_rel)))
self._rel_weight.data.normal_(0, 0.1)
self._scaler = nn.Parameter(torch.zeros(2))
self.n_parse_layers = n_parser_layers
self.weight_act = weight_act
self.relations = relations
@property
def scaler(self):
return self._scaler.exp()
@property
def rel_weight(self):
if self.weight_act == 'sigmoid':
return torch.sigmoid(self._rel_weight)
elif self.weight_act == 'softmax':
return torch.softmax(self._rel_weight, dim=-1)
def parse(self, x, pos):
"""Parse input sentence.
Args:
x: input tokens (required).
pos: position for each token (optional).
Returns:
distance: syntactic distance
height: syntactic height
"""
mask = (x != self.pad)
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)
h = self.emb(x)
for i in range(self.n_parse_layers):
h = h.masked_fill(~mask[:, :, None], 0)
h = self.parser_layers[i](h)
height = self.height_ff(h).squeeze(-1)
height.masked_fill_(~mask, -1e9)
distance = self.distance_ff(h).squeeze(-1)
distance.masked_fill_(~mask_shifted, 1e9)
# Calbrating the distance and height to the same level
length = distance.size(1)
height_max = height[:, None, :].expand(-1, length, -1)
height_max = torch.cummax(
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9,
dim=-1)[0].triu(0)
margin_left = torch.relu(
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max)
margin_right = torch.relu(distance[:, None, :] - height_max)
margin = torch.where(margin_left > margin_right, margin_right,
margin_left).triu(0)
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
margin.masked_fill_(~margin_mask, 0)
margin = margin.max()
distance = distance - margin
return distance, height
def compute_block(self, distance, height):
"""Compute constituents from distance and height."""
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]
gamma = torch.sigmoid(-beta_logits)
ones = torch.ones_like(gamma)
block_mask_left = cummin(
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1)
block_mask_left = block_mask_left - F.pad(
block_mask_left[:, :, :-1], (1, 0), value=0)
block_mask_left.tril_(0)
block_mask_right = cummin(
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1)
block_mask_right = block_mask_right - F.pad(
block_mask_right[:, :, 1:], (0, 1), value=0)
block_mask_right.triu_(0)
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
block = cumsum(block_mask_left).tril(0) + cumsum(
block_mask_right, reverse=True).triu(1)
return block_p, block
def compute_head(self, height):
"""Estimate head for each constituent."""
_, length = height.size()
head_logits = height * self.scaler[1]
index = torch.arange(length, device=height.device)
mask = (index[:, None, None] <= index[None, None, :]) * (
index[None, None, :] <= index[None, :, None])
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
head_logits.masked_fill_(~mask[None, :, :, :], -1e9)
head_p = torch.softmax(head_logits, dim=-1)
return head_p
def generate_mask(self, x, distance, height):
"""Compute head and cibling distribution for each token."""
bsz, length = x.size()
eye = torch.eye(length, device=x.device, dtype=torch.bool)
eye = eye[None, :, :].expand((bsz, -1, -1))
block_p, block = self.compute_block(distance, height)
head_p = self.compute_head(height)
head = torch.einsum('blij,bijh->blh', block_p, head_p)
head = head.masked_fill(eye, 0)
child = head.transpose(1, 2)
cibling = torch.bmm(head, child).masked_fill(eye, 0)
rel_list = []
if 'head' in self.relations:
rel_list.append(head)
if 'child' in self.relations:
rel_list.append(child)
if 'cibling' in self.relations:
rel_list.append(cibling)
rel = torch.stack(rel_list, dim=1)
rel_weight = self.rel_weight
dep = torch.einsum('lhr,brij->lbhij', rel_weight, rel)
att_mask = dep.reshape(self.nlayers, bsz * self.nhead, length, length)
return att_mask, cibling, head, block
def encode(self, x, pos, att_mask):
"""Structformer encoding process."""
visibility = self.visibility(x, x.device)
h = self.emb(x)
if hasattr(self, 'pos_emb'):
assert pos.max() < 500
h = h + self.pos_emb(pos)
for i in range(self.nlayers):
h = self.layers[i](
h.transpose(0, 1), attn_mask=att_mask[i],
key_padding_mask=visibility).transpose(0, 1)
return h
def forward(self, x, pos):
"""Pass the input through the encoder layer.
Args:
x: input tokens (required).
pos: position for each token (optional).
Returns:
output: probability distributions for missing tokens.
state_dict: parsing results and raw output
"""
batch_size, length = x.size()
distance, height = self.parse(x, pos)
att_mask, cibling, head, block = self.generate_mask(x, distance, height)
raw_output = self.encode(x, pos, att_mask)
raw_output = self.norm(raw_output)
raw_output = self.drop(raw_output)
output = self.output_layer(raw_output)
return output.view(batch_size * length, -1), \
{'raw_output': raw_output, 'distance': distance, 'height': height,
'cibling': cibling, 'head': head, 'block': block}
##########################################
# Clasication Head For BabyLM Evaluation Tasks
##########################################
class ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super(ClassificationHead, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
##########################################
# HuggingFace Config
##########################################
class StructFormerConfig(PretrainedConfig):
model_type = "structformer"
def __init__(
self,
hidden_size=512,
nlayers=8,
ntokens=10_000,
nhead=8,
dropout=0.1,
dropatt=0.1,
relative_bias=False,
pos_emb=False,
pad=0,
n_parser_layers=4,
conv_size=9,
relations=('head', 'child'),
weight_act='softmax',
num_labels=1,
hidden_dropout_prob=0.1,
initializer_range=0.02,
**kwargs,
):
self.hidden_size = hidden_size
self.nlayers = nlayers
self.ntokens = ntokens
self.nhead = nhead
self.dropout = dropout
self.dropatt = dropatt
self.relative_bias = relative_bias
self.pos_emb = pos_emb
self.pad = pad
self.n_parser_layers = n_parser_layers
self.conv_size = conv_size
self.relations = relations
self.weight_act = weight_act
self.num_labels = num_labels
self.hidden_dropout_prob = hidden_dropout_prob
self.initializer_range=initializer_range
super().__init__(**kwargs)
class TransformerConfig(PretrainedConfig):
model_type = "transformer"
def __init__(
self,
hidden_size=512,
nlayers=8,
ntokens=10_000,
nhead=8,
dropout=0.1,
dropatt=0.1,
relative_bias=False,
pos_emb=False,
pad=0,
num_labels=1,
hidden_dropout_prob=0.1,
initializer_range=0.02,
**kwargs,
):
self.hidden_size = hidden_size
self.nlayers = nlayers
self.ntokens = ntokens
self.nhead = nhead
self.dropout = dropout
self.dropatt = dropatt
self.relative_bias = relative_bias
self.pos_emb = pos_emb
self.pad = pad
self.num_labels = num_labels
self.hidden_dropout_prob = hidden_dropout_prob
self.initializer_range=initializer_range
super().__init__(**kwargs)
##########################################
# HuggingFace Models
##########################################
class StructFormerModel(PreTrainedModel):
config_class = StructFormerConfig
def __init__(self, config):
super().__init__(config)
self.model = StructFormer(
hidden_size=config.hidden_size,
nlayers=config.nlayers,
ntokens=config.ntokens,
nhead=config.nhead,
dropout=config.dropout,
dropatt=config.dropatt,
relative_bias=config.relative_bias,
pos_emb=config.pos_emb,
pad=config.pad,
n_parser_layers=config.n_parser_layers,
conv_size=config.conv_size,
relations=config.relations,
weight_act=config.weight_act
)
self.config = config
def parse(self, input_ids, **kwargs):
x = input_ids
batch_size, length = x.size()
pos = kwargs['position_ids'] if 'position_ids' in kwargs.keys() else torch.arange(length, device=x.device).expand(batch_size, length)
sf_output = self.model(x, pos)
return sf_output[1]
def forward(self, input_ids, labels=None, **kwargs):
x = input_ids
batch_size, length = x.size()
pos = kwargs['position_ids'] if 'position_ids' in kwargs.keys() else torch.arange(length, device=x.device).expand(batch_size, length)
sf_output = self.model(x, pos)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(sf_output[0], labels.reshape(-1))
return MaskedLMOutput(
loss=loss, # shape: 1
logits=sf_output[0].view(batch_size, length, -1), # shape: (batch_size, length, ntokens)
hidden_states=None,
attentions=None
)
class StructFormerModelForSequenceClassification(PreTrainedModel):
config_class = StructFormerConfig
def __init__(self, config):
super().__init__(config)
self.model = StructFormer(
hidden_size=config.hidden_size,
nlayers=config.nlayers,
ntokens=config.ntokens,
nhead=config.nhead,
dropout=config.dropout,
dropatt=config.dropatt,
relative_bias=config.relative_bias,
pos_emb=config.pos_emb,
pad=config.pad,
n_parser_layers=config.n_parser_layers,
conv_size=config.conv_size,
relations=config.relations,
weight_act=config.weight_act
)
self.config = config
self.num_labels = config.num_labels
self.model.classifier = ClassificationHead(config)
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
if module.bias is not None:
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, input_ids, labels=None, **kwargs):
x = input_ids
batch_size, length = x.size()
pos = kwargs['position_ids'] if 'position_ids' in kwargs.keys() else torch.arange(length, device=x.device).expand(batch_size, length)
sf_output = self.model(x, pos)
logits = self.model.classifier(sf_output[1]['raw_output'])
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=None,
attentions=None,
)
class TransformerModel(PreTrainedModel):
config_class = TransformerConfig
def __init__(self, config):
super().__init__(config)
self.model = Transformer(
hidden_size=config.hidden_size,
nlayers=config.nlayers,
ntokens=config.ntokens,
nhead=config.nhead,
dropout=config.dropout,
dropatt=config.dropatt,
relative_bias=config.relative_bias,
pos_emb=config.pos_emb,
pad=config.pad
)
self.config = config
def forward(self, input_ids, labels=None, **kwargs):
x = input_ids
batch_size, length = x.size()
pos = kwargs['position_ids'] if 'position_ids' in kwargs.keys() else torch.arange(length, device=x.device).expand(batch_size, length)
sf_output = self.model(x, pos)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(sf_output[0], labels.reshape(-1))
return MaskedLMOutput(
loss=loss, # shape: 1
logits=sf_output[0].view(batch_size, length, -1), # shape: (batch_size, length, ntokens)
hidden_states=None,
attentions=None
)
class TransformerModelForSequenceClassification(PreTrainedModel):
config_class = TransformerConfig
def __init__(self, config):
super().__init__(config)
self.model = StructFormer(
hidden_size=config.hidden_size,
nlayers=config.nlayers,
ntokens=config.ntokens,
nhead=config.nhead,
dropout=config.dropout,
dropatt=config.dropatt,
relative_bias=config.relative_bias,
pos_emb=config.pos_emb,
pad=config.pad
)
self.config = config
self.num_labels = config.num_labels
self.model.classifier = ClassificationHead(config)
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
if module.bias is not None:
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def forward(self, input_ids, labels=None, **kwargs):
x = input_ids
batch_size, length = x.size()
pos = kwargs['position_ids'] if 'position_ids' in kwargs.keys() else torch.arange(length, device=x.device).expand(batch_size, length)
sf_output = self.model(x, pos)
logits = self.model.classifier(sf_output[1]['raw_output'])
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=None,
attentions=None,
)