End of training
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: mi-super-modelo
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# mi-super-modelo
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3257
|
21 |
+
- Accuracy: 0.865
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 1
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 0.7019 | 0.04 | 5 | 0.6916 | 0.51 |
|
53 |
+
| 0.7006 | 0.08 | 10 | 0.6860 | 0.495 |
|
54 |
+
| 0.7015 | 0.12 | 15 | 0.6802 | 0.58 |
|
55 |
+
| 0.6842 | 0.16 | 20 | 0.6756 | 0.525 |
|
56 |
+
| 0.658 | 0.2 | 25 | 0.6492 | 0.595 |
|
57 |
+
| 0.6329 | 0.24 | 30 | 0.5335 | 0.855 |
|
58 |
+
| 0.4345 | 0.28 | 35 | 0.4493 | 0.825 |
|
59 |
+
| 0.3086 | 0.32 | 40 | 0.3973 | 0.84 |
|
60 |
+
| 0.4788 | 0.36 | 45 | 0.3747 | 0.855 |
|
61 |
+
| 0.6449 | 0.4 | 50 | 0.4614 | 0.8 |
|
62 |
+
| 0.2355 | 0.44 | 55 | 0.3603 | 0.855 |
|
63 |
+
| 0.4233 | 0.48 | 60 | 0.4841 | 0.8 |
|
64 |
+
| 0.5185 | 0.52 | 65 | 0.5940 | 0.755 |
|
65 |
+
| 0.3089 | 0.56 | 70 | 0.3760 | 0.87 |
|
66 |
+
| 0.3867 | 0.6 | 75 | 0.3636 | 0.86 |
|
67 |
+
| 0.3289 | 0.64 | 80 | 0.3339 | 0.885 |
|
68 |
+
| 0.5774 | 0.68 | 85 | 0.3070 | 0.875 |
|
69 |
+
| 0.3258 | 0.72 | 90 | 0.4532 | 0.8 |
|
70 |
+
| 0.5363 | 0.76 | 95 | 0.3687 | 0.86 |
|
71 |
+
| 0.4099 | 0.8 | 100 | 0.2847 | 0.88 |
|
72 |
+
| 0.2841 | 0.84 | 105 | 0.3147 | 0.885 |
|
73 |
+
| 0.3949 | 0.88 | 110 | 0.3424 | 0.855 |
|
74 |
+
| 0.3056 | 0.92 | 115 | 0.3620 | 0.835 |
|
75 |
+
| 0.4219 | 0.96 | 120 | 0.3437 | 0.855 |
|
76 |
+
| 0.3343 | 1.0 | 125 | 0.3257 | 0.865 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.44.2
|
82 |
+
- Pytorch 2.4.1+cpu
|
83 |
+
- Datasets 2.21.0
|
84 |
+
- Tokenizers 0.19.1
|