omegaodin commited on
Commit
150f7f7
1 Parent(s): df20e83

End of training

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: mi-super-modelo
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # mi-super-modelo
17
+
18
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.3257
21
+ - Accuracy: 0.865
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 1
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.7019 | 0.04 | 5 | 0.6916 | 0.51 |
53
+ | 0.7006 | 0.08 | 10 | 0.6860 | 0.495 |
54
+ | 0.7015 | 0.12 | 15 | 0.6802 | 0.58 |
55
+ | 0.6842 | 0.16 | 20 | 0.6756 | 0.525 |
56
+ | 0.658 | 0.2 | 25 | 0.6492 | 0.595 |
57
+ | 0.6329 | 0.24 | 30 | 0.5335 | 0.855 |
58
+ | 0.4345 | 0.28 | 35 | 0.4493 | 0.825 |
59
+ | 0.3086 | 0.32 | 40 | 0.3973 | 0.84 |
60
+ | 0.4788 | 0.36 | 45 | 0.3747 | 0.855 |
61
+ | 0.6449 | 0.4 | 50 | 0.4614 | 0.8 |
62
+ | 0.2355 | 0.44 | 55 | 0.3603 | 0.855 |
63
+ | 0.4233 | 0.48 | 60 | 0.4841 | 0.8 |
64
+ | 0.5185 | 0.52 | 65 | 0.5940 | 0.755 |
65
+ | 0.3089 | 0.56 | 70 | 0.3760 | 0.87 |
66
+ | 0.3867 | 0.6 | 75 | 0.3636 | 0.86 |
67
+ | 0.3289 | 0.64 | 80 | 0.3339 | 0.885 |
68
+ | 0.5774 | 0.68 | 85 | 0.3070 | 0.875 |
69
+ | 0.3258 | 0.72 | 90 | 0.4532 | 0.8 |
70
+ | 0.5363 | 0.76 | 95 | 0.3687 | 0.86 |
71
+ | 0.4099 | 0.8 | 100 | 0.2847 | 0.88 |
72
+ | 0.2841 | 0.84 | 105 | 0.3147 | 0.885 |
73
+ | 0.3949 | 0.88 | 110 | 0.3424 | 0.855 |
74
+ | 0.3056 | 0.92 | 115 | 0.3620 | 0.835 |
75
+ | 0.4219 | 0.96 | 120 | 0.3437 | 0.855 |
76
+ | 0.3343 | 1.0 | 125 | 0.3257 | 0.865 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.44.2
82
+ - Pytorch 2.4.1+cpu
83
+ - Datasets 2.21.0
84
+ - Tokenizers 0.19.1