--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base-finetuned-kinetics tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: videomae-finetuned-nba-5-class-4-batch-8000-vid-multilabel-4 results: [] --- # videomae-finetuned-nba-5-class-4-batch-8000-vid-multilabel-4 This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4886 - F1: 0.8863 - Roc Auc: 0.9209 - Accuracy: 0.7962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 50000 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|:--------:| | 0.771 | 0.04 | 2000 | 0.7660 | 0.6227 | 0.7324 | 0.2937 | | 0.6225 | 1.04 | 4000 | 0.6446 | 0.7401 | 0.8162 | 0.4653 | | 0.6093 | 2.04 | 6000 | 0.6517 | 0.7441 | 0.8223 | 0.5253 | | 0.603 | 3.04 | 8000 | 0.5630 | 0.8151 | 0.8722 | 0.6558 | | 0.6547 | 4.04 | 10000 | 0.5009 | 0.8425 | 0.8911 | 0.6695 | | 0.6426 | 5.04 | 12000 | 0.5179 | 0.8422 | 0.9012 | 0.6642 | | 0.4447 | 6.04 | 14000 | 0.5052 | 0.8537 | 0.8973 | 0.7147 | | 0.6949 | 7.04 | 16000 | 0.5045 | 0.8548 | 0.8974 | 0.7337 | | 0.509 | 8.04 | 18000 | 0.5262 | 0.8705 | 0.9089 | 0.7768 | | 0.4341 | 9.04 | 20000 | 0.4731 | 0.8831 | 0.9163 | 0.7863 | | 0.5037 | 10.04 | 22000 | 0.5040 | 0.8781 | 0.9154 | 0.7747 | | 0.3592 | 11.04 | 24000 | 0.5091 | 0.8746 | 0.9101 | 0.7821 | | 0.2829 | 12.04 | 26000 | 0.4709 | 0.8867 | 0.9230 | 0.7905 | | 0.3599 | 13.04 | 28000 | 0.4722 | 0.8888 | 0.9230 | 0.7947 | | 0.4152 | 14.04 | 30000 | 0.4744 | 0.8911 | 0.9247 | 0.8074 | | 0.1167 | 15.04 | 32000 | 0.4817 | 0.8949 | 0.9241 | 0.8179 | | 0.2721 | 16.04 | 34000 | 0.4627 | 0.9064 | 0.9337 | 0.8274 | | 0.42 | 17.04 | 36000 | 0.4849 | 0.8992 | 0.9282 | 0.8295 | | 0.5841 | 18.04 | 38000 | 0.4747 | 0.9026 | 0.9304 | 0.8379 | | 0.509 | 19.04 | 40000 | 0.4779 | 0.8991 | 0.9273 | 0.8316 | | 0.1599 | 20.04 | 42000 | 0.4945 | 0.9056 | 0.9319 | 0.8411 | | 0.3645 | 21.04 | 44000 | 0.4875 | 0.8984 | 0.9277 | 0.8242 | | 0.4402 | 22.04 | 46000 | 0.5156 | 0.9004 | 0.9283 | 0.8368 | | 0.2769 | 23.04 | 48000 | 0.5063 | 0.9028 | 0.9296 | 0.8389 | | 0.3009 | 24.04 | 50000 | 0.5122 | 0.8975 | 0.9257 | 0.8326 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1