File size: 10,892 Bytes
169d5ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
---
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: world:Though Arthur skips to another world, he's clearly from our own
- text: attire:Among those are the army of doglike and winged creatures, all dressed
in attire befitting a civilization one hundred and fifty years ago
- text: Mister Monday:This is a 361 page book about a boy named Arthur Penhaligon
who is destined to die an early death, but is saved by a key given to him by a
mysterious man named Mister Monday
- text: parents:Do their parents understand or even care about them? Are they ready
for sex? Meanwhile can Maggie and Dennis learn to communicate enough to stay together?
- text: boy:This is a 361 page book about a boy named Arthur Penhaligon who is destined
to die an early death, but is saved by a key given to him by a mysterious man
named Mister Monday
inference: false
model-index:
- name: SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8541666666666666
name: Accuracy
---
# SetFit Aspect Model with sentence-transformers/all-MiniLM-L6-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
1. Use a spaCy model to select possible aspect span candidates.
2. **Use this SetFit model to filter these possible aspect span candidates.**
3. Use a SetFit model to classify the filtered aspect span candidates.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** en_core_web_lg
- **SetFitABSA Aspect Model:** [omymble/setfit-absa-books-aspect](https://huggingface.co/omymble/setfit-absa-books-aspect)
- **SetFitABSA Polarity Model:** [omymble/setfit-absa-books-polarity](https://huggingface.co/omymble/setfit-absa-books-polarity)
- **Maximum Sequence Length:** 256 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aspect | <ul><li>'Poirot:After reading nearly 30 novels, Poirot had been a part of life'</li><li>'Michael Dobbs:The cast of characters in this sweeping story by Michael Dobbs of political maneuvering, skullduggery, and backstabbing is an historical Who\'s Who of the times: the ailing, haughty, and pacifist Chamberlain, who personifies England\'s bitter memories of the Great War and the popular concept of "never again"; the ambitious and self-absorbed Churchill, whose pugnacity sometimes clouds prudence; the defeatist, philandering, and anti-Semitic U'</li><li>"Jack:Jack is a wonderful beleaguered hero who starts off by quickly realizing he don't know jack even about himself and as he investigates realizes each new clue proves he knows even less than he thought"</li></ul> |
| no aspect | <ul><li>'novels:After reading nearly 30 novels, Poirot had been a part of life'</li><li>'part:After reading nearly 30 novels, Poirot had been a part of life'</li><li>'life:After reading nearly 30 novels, Poirot had been a part of life'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8542 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"omymble/setfit-absa-books-aspect",
"omymble/setfit-absa-books-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 6 | 34.7122 | 79 |
| Label | Training Sample Count |
|:----------|:----------------------|
| no aspect | 280 |
| aspect | 57 |
### Training Hyperparameters
- batch_size: (256, 256)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:----------:|:-------:|:-------------:|:---------------:|
| 0.0031 | 1 | 0.3698 | - |
| 0.1558 | 50 | 0.3449 | 0.3303 |
| 0.3115 | 100 | 0.3032 | 0.294 |
| 0.4673 | 150 | 0.2878 | 0.266 |
| 0.6231 | 200 | 0.2414 | 0.2535 |
| 0.7788 | 250 | 0.2456 | 0.2494 |
| 0.9346 | 300 | 0.2374 | 0.2477 |
| 1.0903 | 350 | 0.2407 | 0.2472 |
| 1.2461 | 400 | 0.2406 | 0.2467 |
| 1.4019 | 450 | 0.2276 | 0.2465 |
| 1.5576 | 500 | 0.2248 | 0.2465 |
| 1.7134 | 550 | 0.2241 | 0.2464 |
| **1.8692** | **600** | **0.2245** | **0.2463** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- spaCy: 3.7.4
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |