--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_3Class_RMSprop_1-e5_20Epoch_Beit-base-patch16_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8310279359913209 --- # Boya1_3Class_RMSprop_1-e5_20Epoch_Beit-base-patch16_fold5 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.7877 - Accuracy: 0.8310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5804 | 1.0 | 924 | 0.4986 | 0.8004 | | 0.4299 | 2.0 | 1848 | 0.4370 | 0.8248 | | 0.2235 | 3.0 | 2772 | 0.4410 | 0.8446 | | 0.1347 | 4.0 | 3696 | 0.5720 | 0.8343 | | 0.0488 | 5.0 | 4620 | 0.8207 | 0.8275 | | 0.2009 | 6.0 | 5544 | 1.0317 | 0.8329 | | 0.0566 | 7.0 | 6468 | 1.3823 | 0.8205 | | 0.0733 | 8.0 | 7392 | 1.3466 | 0.8324 | | 0.0357 | 9.0 | 8316 | 1.3267 | 0.8362 | | 0.071 | 10.0 | 9240 | 1.5459 | 0.8264 | | 0.0505 | 11.0 | 10164 | 1.6231 | 0.8280 | | 0.1165 | 12.0 | 11088 | 1.6016 | 0.8297 | | 0.0243 | 13.0 | 12012 | 1.7023 | 0.8351 | | 0.0327 | 14.0 | 12936 | 1.6673 | 0.8354 | | 0.002 | 15.0 | 13860 | 1.7768 | 0.8259 | | 0.0008 | 16.0 | 14784 | 1.8057 | 0.8302 | | 0.0117 | 17.0 | 15708 | 1.8092 | 0.8253 | | 0.024 | 18.0 | 16632 | 1.7701 | 0.8324 | | 0.0349 | 19.0 | 17556 | 1.7881 | 0.8291 | | 0.0001 | 20.0 | 18480 | 1.7877 | 0.8310 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1