--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6437837837837838 --- # Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold2 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.1168 - Accuracy: 0.6438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0678 | 1.0 | 923 | 1.1860 | 0.5962 | | 0.9795 | 2.0 | 1846 | 1.0466 | 0.6414 | | 0.6213 | 3.0 | 2769 | 1.0577 | 0.6403 | | 0.3941 | 4.0 | 3692 | 1.2437 | 0.6424 | | 0.3011 | 5.0 | 4615 | 1.4589 | 0.6443 | | 0.1999 | 6.0 | 5538 | 1.7644 | 0.63 | | 0.039 | 7.0 | 6461 | 1.9747 | 0.64 | | 0.0664 | 8.0 | 7384 | 2.2470 | 0.6368 | | 0.0635 | 9.0 | 8307 | 2.4483 | 0.6451 | | 0.0688 | 10.0 | 9230 | 2.6192 | 0.6516 | | 0.0389 | 11.0 | 10153 | 2.7333 | 0.6470 | | 0.0075 | 12.0 | 11076 | 2.8548 | 0.6446 | | 0.0085 | 13.0 | 11999 | 2.9858 | 0.6416 | | 0.0018 | 14.0 | 12922 | 2.9790 | 0.6424 | | 0.0034 | 15.0 | 13845 | 3.0326 | 0.6443 | | 0.009 | 16.0 | 14768 | 3.0570 | 0.6473 | | 0.0005 | 17.0 | 15691 | 3.1227 | 0.6419 | | 0.0 | 18.0 | 16614 | 3.1155 | 0.6449 | | 0.0002 | 19.0 | 17537 | 3.1130 | 0.6454 | | 0.0002 | 20.0 | 18460 | 3.1168 | 0.6438 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1