--- base_model: facebook/maskformer-resnet101-ade20k-full library_name: transformers.js pipeline_tag: image-segmentation --- https://huggingface.co/facebook/maskformer-resnet101-ade20k-full with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Scene segmentation with `onnx-community/maskformer-resnet101-ade20k-full`. ```js import { pipeline } from '@huggingface/transformers'; // Create an image segmentation pipeline const segmenter = await pipeline('image-segmentation', 'onnx-community/maskformer-resnet101-ade20k-full'); // Segment an image const url = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'; const output = await segmenter(url); console.log(output) // [ // { // score: 0.9240802526473999, // label: 'plant', // mask: RawImage { ... } // }, // { // score: 0.967036783695221, // label: 'house', // mask: RawImage { ... } // }, // ... // } // ] ``` You can visualize the outputs with: ```js for (let i = 0; i < output.length; ++i) { const { mask, label } = output[i]; mask.save(`${label}-${i}.png`); } ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).