Xenova HF staff commited on
Commit
1980381
1 Parent(s): b811a26

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md CHANGED
@@ -5,4 +5,49 @@ pipeline_tag: image-segmentation
5
 
6
  https://huggingface.co/facebook/maskformer-resnet50-coco-stuff with ONNX weights to be compatible with Transformers.js.
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
 
5
 
6
  https://huggingface.co/facebook/maskformer-resnet50-coco-stuff with ONNX weights to be compatible with Transformers.js.
7
 
8
+ ## Usage (Transformers.js)
9
+
10
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
11
+ ```bash
12
+ npm i @huggingface/transformers
13
+ ```
14
+
15
+ **Example:** Face segmentation with `onnx-community/maskformer-resnet50-coco-stuff`.
16
+
17
+ ```js
18
+ import { pipeline } from '@huggingface/transformers';
19
+
20
+ // Create an image segmentation pipeline
21
+ const segmenter = await pipeline('image-segmentation', 'onnx-community/maskformer-resnet50-coco-stuff');
22
+
23
+ // Segment an image
24
+ const url = 'http://images.cocodataset.org/val2017/000000039769.jpg';
25
+ const output = await segmenter(url);
26
+ console.log(output)
27
+ // [
28
+ // {
29
+ // score: 0.9626941680908203,
30
+ // label: 'couch',
31
+ // mask: RawImage { ... }
32
+ // },
33
+ // {
34
+ // score: 0.9967071413993835,
35
+ // label: 'cat',
36
+ // mask: RawImage { ... }
37
+ // },
38
+ // ...
39
+ // }
40
+ // ]
41
+ ```
42
+
43
+ You can visualize the outputs with:
44
+ ```js
45
+ for (let i = 0; i < output.length; ++i) {
46
+ const { mask, label } = output[i];
47
+ mask.save(`${label}-${i}.png`);
48
+ }
49
+ ```
50
+
51
+ ---
52
+
53
  Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).