Update README.md
Browse files
README.md
CHANGED
@@ -7,31 +7,42 @@ datasets:
|
|
7 |
|
8 |
|
9 |
## OmniLMM 12B
|
10 |
-
|
|
|
11 |
|
12 |
- 🔥 **Strong Performance.**
|
13 |
|
14 |
-
OmniLMM-12B achieves **leading performance** among models with comparable sizes, surpassing established LMMs on multiple benchmarks (including MME, MMBench, SEED-Bench, etc). The model also
|
15 |
|
16 |
- 🏆 **Trustworthy Behavior.**
|
17 |
|
18 |
-
LMMs are known for suffering from hallucination, often generating text that is not factually grounded in images (e.g., faithfully describing non-existing objects in images). OmniLMM-12B is **the first state-of-the-art open-source LMM aligned via multimodal RLHF for trustworthy behavior** (using
|
19 |
|
20 |
- 🕹 **Real-time Multimodal Interaction.**
|
21 |
|
22 |
-
We combine the OmniLMM-12B and GPT-3.5 into a **real-time multimodal interactive assistant**. The assistant accepts video streams from the camera and speech streams from the microphone and emits speech output. While still primary, we find the model can **replicate some of the fun cases shown in the Gemini Demo video, without any video edition**.
|
|
|
23 |
|
24 |
## Evaluation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
<table>
|
26 |
<thead>
|
27 |
<tr>
|
28 |
<th align="left">Model</th>
|
29 |
<th>Size</th>
|
30 |
<th>MME</th>
|
|
|
31 |
<th nowrap="nowrap" >MMMU val</th>
|
32 |
<th nowrap="nowrap" >MMHal-Bench</th>
|
|
|
33 |
<th nowrap="nowrap" >SeedBench-I</th>
|
34 |
-
<th nowrap="nowrap">MMB dev (en)</th>
|
35 |
<th>MathVista</th>
|
36 |
<th nowrap="nowrap" >LLaVA Bench W</th>
|
37 |
</tr>
|
@@ -41,10 +52,11 @@ datasets:
|
|
41 |
<td align="left">GPT-4V†</td>
|
42 |
<td>-</td>
|
43 |
<td>1409</td>
|
|
|
44 |
<td>56.8</td>
|
45 |
<td>3.53 / 70.8</td>
|
|
|
46 |
<td>71.6 </td>
|
47 |
-
<td>75.1 </td>
|
48 |
<td>47.8 </td>
|
49 |
<td>93.1 </td>
|
50 |
</tr>
|
@@ -52,10 +64,11 @@ datasets:
|
|
52 |
<td nowrap="nowrap" align="left">Qwen-VL-Plus†</td>
|
53 |
<td>-</td>
|
54 |
<td>1681</td>
|
|
|
55 |
<td>45.2</td>
|
56 |
<td>- </td>
|
|
|
57 |
<td>65.7 </td>
|
58 |
-
<td>66.2 </td>
|
59 |
<td>36.0 </td>
|
60 |
<td>73.7 </td>
|
61 |
</tr>
|
@@ -63,10 +76,11 @@ datasets:
|
|
63 |
<td align="left">Yi-VL 6B</td>
|
64 |
<td align="right">6.7B </td>
|
65 |
<td>- </td>
|
|
|
66 |
<td>39.1 </td>
|
67 |
<td>- </td>
|
|
|
68 |
<td>66.1 </td>
|
69 |
-
<td>68.2 </td>
|
70 |
<td>28.0 </td>
|
71 |
<td>39.9 </td>
|
72 |
</tr>
|
@@ -74,10 +88,11 @@ datasets:
|
|
74 |
<td nowrap="nowrap" align="left" >Qwen-VL-Chat</td>
|
75 |
<td align="right">9.6B</td>
|
76 |
<td>1488</td>
|
|
|
77 |
<td>35.9</td>
|
78 |
<td>2.93 / 59.4</td>
|
|
|
79 |
<td>64.8 </td>
|
80 |
-
<td>60.6 </td>
|
81 |
<td>33.8 </td>
|
82 |
<td>67.7 </td>
|
83 |
</tr>
|
@@ -85,10 +100,11 @@ datasets:
|
|
85 |
<td align="left" >CogVLM</td>
|
86 |
<td align="right">17.4B</td>
|
87 |
<td>1438</td>
|
|
|
88 |
<td>32.1 </td>
|
89 |
<td>2.68 / 52.1 </td>
|
|
|
90 |
<td>68.8 </td>
|
91 |
-
<td>63.7 </td>
|
92 |
<td>34.7 </td>
|
93 |
<td>73.9 </td>
|
94 |
</tr>
|
@@ -96,10 +112,11 @@ datasets:
|
|
96 |
<td align="left" >LLaVA 1.5</td>
|
97 |
<td align="right">13.6B </td>
|
98 |
<td>1531 </td>
|
|
|
99 |
<td>36.4 </td>
|
100 |
<td>2.71 / 51.0 </td>
|
|
|
101 |
<td>68.1 </td>
|
102 |
-
<td>68.2 </td>
|
103 |
<td>26.4 </td>
|
104 |
<td>64.6 </td>
|
105 |
</tr>
|
@@ -107,16 +124,20 @@ datasets:
|
|
107 |
<td nowrap="nowrap" align="left" ><b>OmniLMM-12B</b></td>
|
108 |
<td align="right">11.6B </td>
|
109 |
<td>1637 </td>
|
|
|
110 |
<td>40.7 </td>
|
111 |
<td>3.45 / 68.8 </td>
|
|
|
112 |
<td>71.1 </td>
|
113 |
-
<td>71.6 </td>
|
114 |
<td>34.9 </td>
|
115 |
<td>72.0 </td>
|
116 |
</tr>
|
117 |
</tbody>
|
118 |
</table>
|
119 |
<small>†: Proprietary models</small>
|
|
|
|
|
|
|
120 |
|
121 |
## Demo
|
122 |
Click here to try out the Demo of [OmniLMM-12B](http://120.92.209.146:8081).
|
|
|
7 |
|
8 |
|
9 |
## OmniLMM 12B
|
10 |
+
|
11 |
+
**OmniLMM-12B** is the most capable version of OmniLMM currently. The model is built based on EVA02-5B and Zephyr-7B-β, connected with a perceiver resampler layer, and trained on multimodal data in a curriculum fashion. The model has three notable features:
|
12 |
|
13 |
- 🔥 **Strong Performance.**
|
14 |
|
15 |
+
OmniLMM-12B achieves **leading performance** among models with comparable sizes, surpassing established LMMs on multiple benchmarks (including MME, MMBench, SEED-Bench, etc). The model also endows rich multi-modal world knowledge.
|
16 |
|
17 |
- 🏆 **Trustworthy Behavior.**
|
18 |
|
19 |
+
LMMs are known for suffering from hallucination, often generating text that is not factually grounded in images (e.g., faithfully describing non-existing objects in images). OmniLMM-12B is **the first state-of-the-art open-source LMM aligned via multimodal RLHF for trustworthy behavior** (using the recent [RLHF-V](https://rlhf-v.github.io/) technique). It **ranks #1** among open-source models on [MMHal-Bench](https://huggingface.co/datasets/Shengcao1006/MMHal-Bench), and **outperforms GPT-4V** on [Object HalBench](https://arxiv.org/abs/2312.00849).
|
20 |
|
21 |
- 🕹 **Real-time Multimodal Interaction.**
|
22 |
|
23 |
+
We combine the OmniLMM-12B and GPT-3.5 (text-only) into a **real-time multimodal interactive assistant**. The assistant accepts video streams from the camera and speech streams from the microphone and emits speech output. While still primary, we find the model can **replicate some of the fun cases shown in the Gemini Demo video, without any video edition**.
|
24 |
+
|
25 |
|
26 |
## Evaluation
|
27 |
+
|
28 |
+
|
29 |
+
<div align="center">
|
30 |
+
<img src=https://cdn-uploads.huggingface.co/production/uploads/64abc4aa6cadc7aca585dddf/LuKikSY4CJiqtHocGP_xu.png width=66% />
|
31 |
+
</div>
|
32 |
+
<details>
|
33 |
+
<summary>Click to view results on MME, MMBench, MMMU, MMBench, MMHal-Bench, Object HalBench, SeedBench, LLaVA Bench W, MathVista. </summary>
|
34 |
+
|
35 |
<table>
|
36 |
<thead>
|
37 |
<tr>
|
38 |
<th align="left">Model</th>
|
39 |
<th>Size</th>
|
40 |
<th>MME</th>
|
41 |
+
<th nowrap="nowrap">MMB dev (en)</th>
|
42 |
<th nowrap="nowrap" >MMMU val</th>
|
43 |
<th nowrap="nowrap" >MMHal-Bench</th>
|
44 |
+
<th nowrap="nowrap" >Object HalBench</th>
|
45 |
<th nowrap="nowrap" >SeedBench-I</th>
|
|
|
46 |
<th>MathVista</th>
|
47 |
<th nowrap="nowrap" >LLaVA Bench W</th>
|
48 |
</tr>
|
|
|
52 |
<td align="left">GPT-4V†</td>
|
53 |
<td>-</td>
|
54 |
<td>1409</td>
|
55 |
+
<td>75.1 </td>
|
56 |
<td>56.8</td>
|
57 |
<td>3.53 / 70.8</td>
|
58 |
+
<td>86.4 / 92.7</td>
|
59 |
<td>71.6 </td>
|
|
|
60 |
<td>47.8 </td>
|
61 |
<td>93.1 </td>
|
62 |
</tr>
|
|
|
64 |
<td nowrap="nowrap" align="left">Qwen-VL-Plus†</td>
|
65 |
<td>-</td>
|
66 |
<td>1681</td>
|
67 |
+
<td>66.2 </td>
|
68 |
<td>45.2</td>
|
69 |
<td>- </td>
|
70 |
+
<td>- </td>
|
71 |
<td>65.7 </td>
|
|
|
72 |
<td>36.0 </td>
|
73 |
<td>73.7 </td>
|
74 |
</tr>
|
|
|
76 |
<td align="left">Yi-VL 6B</td>
|
77 |
<td align="right">6.7B </td>
|
78 |
<td>- </td>
|
79 |
+
<td>68.2 </td>
|
80 |
<td>39.1 </td>
|
81 |
<td>- </td>
|
82 |
+
<td>- </td>
|
83 |
<td>66.1 </td>
|
|
|
84 |
<td>28.0 </td>
|
85 |
<td>39.9 </td>
|
86 |
</tr>
|
|
|
88 |
<td nowrap="nowrap" align="left" >Qwen-VL-Chat</td>
|
89 |
<td align="right">9.6B</td>
|
90 |
<td>1488</td>
|
91 |
+
<td>60.6 </td>
|
92 |
<td>35.9</td>
|
93 |
<td>2.93 / 59.4</td>
|
94 |
+
<td>56.2 / 80.0</td>
|
95 |
<td>64.8 </td>
|
|
|
96 |
<td>33.8 </td>
|
97 |
<td>67.7 </td>
|
98 |
</tr>
|
|
|
100 |
<td align="left" >CogVLM</td>
|
101 |
<td align="right">17.4B</td>
|
102 |
<td>1438</td>
|
103 |
+
<td>63.7 </td>
|
104 |
<td>32.1 </td>
|
105 |
<td>2.68 / 52.1 </td>
|
106 |
+
<td>73.6 / 87.4 </td>
|
107 |
<td>68.8 </td>
|
|
|
108 |
<td>34.7 </td>
|
109 |
<td>73.9 </td>
|
110 |
</tr>
|
|
|
112 |
<td align="left" >LLaVA 1.5</td>
|
113 |
<td align="right">13.6B </td>
|
114 |
<td>1531 </td>
|
115 |
+
<td>68.2 </td>
|
116 |
<td>36.4 </td>
|
117 |
<td>2.71 / 51.0 </td>
|
118 |
+
<td>53.7 / 77.4 </td>
|
119 |
<td>68.1 </td>
|
|
|
120 |
<td>26.4 </td>
|
121 |
<td>64.6 </td>
|
122 |
</tr>
|
|
|
124 |
<td nowrap="nowrap" align="left" ><b>OmniLMM-12B</b></td>
|
125 |
<td align="right">11.6B </td>
|
126 |
<td>1637 </td>
|
127 |
+
<td>71.6 </td>
|
128 |
<td>40.7 </td>
|
129 |
<td>3.45 / 68.8 </td>
|
130 |
+
<td>90.3 / 95.5 </td>
|
131 |
<td>71.1 </td>
|
|
|
132 |
<td>34.9 </td>
|
133 |
<td>72.0 </td>
|
134 |
</tr>
|
135 |
</tbody>
|
136 |
</table>
|
137 |
<small>†: Proprietary models</small>
|
138 |
+
<br>
|
139 |
+
</details>
|
140 |
+
|
141 |
|
142 |
## Demo
|
143 |
Click here to try out the Demo of [OmniLMM-12B](http://120.92.209.146:8081).
|