add source files
Browse files- configuration_cpmbee.py +132 -0
- modeling_cpmbee.py +1944 -0
- test_modeling_cpmbee.py +183 -0
- test_tokenization_cpmbee.py +187 -0
- tokenization_cpmbee.py +868 -0
configuration_cpmbee.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" CpmBee model configuration"""
|
16 |
+
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
CPMBEE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"openbmb/cpm-bee-10b": "https://huggingface.co/openbmb/cpm-bee-10b/resolve/main/config.json",
|
27 |
+
"openbmb/cpm-bee-5b": "https://huggingface.co/openbmb/cpm-bee-5b/resolve/main/config.json",
|
28 |
+
"openbmb/cpm-bee-2b": "https://huggingface.co/openbmb/cpm-bee-2b/resolve/main/config.json",
|
29 |
+
"openbmb/cpm-bee-1b": "https://huggingface.co/openbmb/cpm-bee-1b/resolve/main/config.json",
|
30 |
+
# See all CpmBee models at https://huggingface.co/models?filter=cpmbee
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class CpmBeeConfig(PretrainedConfig):
|
35 |
+
r"""
|
36 |
+
This is the configuration class to store the configuration of a [`CpmBeeModel`]. It is used to instbeeiate an
|
37 |
+
CPMBee model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
38 |
+
with the defaults will yield a similar configuration to that of the CPMBee
|
39 |
+
[openbmb/cpm-bee-10b](https://huggingface.co/openbmb/cpm-bee-10b) architecture.
|
40 |
+
|
41 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
42 |
+
documentation from [`PretrainedConfig`] for more information.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
vocab_size (`int`, *optional*, defaults to 30720):
|
46 |
+
Vocabulary size of the CPMBee model. Defines the number of different tokens that can be represented by the
|
47 |
+
`input` passed when calling [`CpmBeeModel`].
|
48 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
49 |
+
Dimension of the encoder layers.
|
50 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
51 |
+
Number of attention heads in the Transformer encoder.
|
52 |
+
dim_head (`int`, *optional*, defaults to 128):
|
53 |
+
Dimension of attention heads for each attention layer in the Transformer encoder.
|
54 |
+
dim_ff (`int`, *optional*, defaults to 10240):
|
55 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
56 |
+
num_hidden_layers (`int`, *optional*, defaults to 48):
|
57 |
+
Number of layers of the Transformer encoder.
|
58 |
+
dropout_p (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probabilitiy for all fully connected layers in the embeddings, encoder.
|
60 |
+
position_bias_num_buckets (`int`, *optional*, defaults to 512):
|
61 |
+
The number of position_bias buckets.
|
62 |
+
position_bias_num_segment_buckets (`int`, *optional*, defaults to 32):
|
63 |
+
The number of segment buckets.
|
64 |
+
position_bias_max_distance (`int`, *optional*, defaults to 2048):
|
65 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
66 |
+
just in case (e.g., 512 or 1024 or 2048).
|
67 |
+
eps (`float`, *optional*, defaults to 1e-6):
|
68 |
+
The epsilon used by the layer normalization layers.
|
69 |
+
init_std (`float`, *optional*, defaults to 1.0):
|
70 |
+
Initialize parameters with std = init_std.
|
71 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
72 |
+
Whether to use cache.
|
73 |
+
distance_scale (`float` or `int`, *optional*, defaults to 16):
|
74 |
+
Scale the rotary embedding.
|
75 |
+
mask_modules (`list` or `tuple`, *optional*, defaults to None):
|
76 |
+
Decides which feedforward block or attention block is pruned.
|
77 |
+
half (`bool`, *optional*, defaults to `False`):
|
78 |
+
Decides the model parameters are half-precision or not.
|
79 |
+
|
80 |
+
Example:
|
81 |
+
|
82 |
+
```python
|
83 |
+
>>> from transformers import CpmBeeModel, CpmBeeConfig
|
84 |
+
|
85 |
+
>>> # Initializing a CPMBee cpm-bee-10b style configuration
|
86 |
+
>>> configuration = CpmBeeConfig()
|
87 |
+
|
88 |
+
>>> # Initializing a model from the cpm-bee-10b style configuration
|
89 |
+
>>> model = CpmBeeModel(configuration)
|
90 |
+
|
91 |
+
>>> # Accessing the model configuration
|
92 |
+
>>> configuration = model.config
|
93 |
+
```"""
|
94 |
+
model_type = "cpmbee"
|
95 |
+
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
vocab_size: int = 30720,
|
99 |
+
hidden_size: int = 4096,
|
100 |
+
num_attention_heads: int = 64,
|
101 |
+
dim_head: int = 64,
|
102 |
+
dim_ff: int = 10240,
|
103 |
+
num_hidden_layers: int = 32,
|
104 |
+
dropout_p: int = 0.0,
|
105 |
+
position_bias_num_buckets: int = 256,
|
106 |
+
position_bias_num_segment_buckets: int = 32,
|
107 |
+
position_bias_max_distance: int = 2048,
|
108 |
+
eps: int = 1e-6,
|
109 |
+
init_std: float = 1.0,
|
110 |
+
use_cache: bool = True,
|
111 |
+
distance_scale: Union[int, float] = 16,
|
112 |
+
mask_modules: Optional[Union[List, Tuple]] = None,
|
113 |
+
half: bool = False,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
super().__init__(**kwargs)
|
117 |
+
self.position_bias_num_segment_buckets = position_bias_num_segment_buckets
|
118 |
+
self.hidden_size = hidden_size
|
119 |
+
self.num_attention_heads = num_attention_heads
|
120 |
+
self.dim_head = dim_head
|
121 |
+
self.dim_ff = dim_ff
|
122 |
+
self.num_hidden_layers = num_hidden_layers
|
123 |
+
self.position_bias_num_buckets = position_bias_num_buckets
|
124 |
+
self.position_bias_max_distance = position_bias_max_distance
|
125 |
+
self.dropout_p = dropout_p
|
126 |
+
self.eps = eps
|
127 |
+
self.use_cache = use_cache
|
128 |
+
self.vocab_size = vocab_size
|
129 |
+
self.init_std = init_std
|
130 |
+
self.distance_scale = distance_scale
|
131 |
+
self.half = half
|
132 |
+
self.mask_modules = mask_modules
|
modeling_cpmbee.py
ADDED
@@ -0,0 +1,1944 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The OpenBMB Team The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch CpmBee model."""
|
16 |
+
import copy
|
17 |
+
import math
|
18 |
+
from collections import UserDict
|
19 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
|
24 |
+
from ...generation.beam_search import BeamHypotheses, BeamSearchScorer
|
25 |
+
from ...generation.streamers import BaseStreamer
|
26 |
+
from ...generation.utils import (
|
27 |
+
GenerationConfig,
|
28 |
+
LogitsProcessorList,
|
29 |
+
StoppingCriteriaList,
|
30 |
+
dist,
|
31 |
+
inspect,
|
32 |
+
is_deepspeed_zero3_enabled,
|
33 |
+
warnings,
|
34 |
+
)
|
35 |
+
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput
|
36 |
+
from ...modeling_utils import PreTrainedModel
|
37 |
+
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
38 |
+
from .configuration_cpmbee import CpmBeeConfig
|
39 |
+
from .tokenization_cpmbee import CpmBeeTokenizer
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
_CHECKPOINT_FOR_DOC = "openbmb/cpm-bee-10b"
|
45 |
+
_CONFIG_FOR_DOC = "CpmBeeConfig"
|
46 |
+
|
47 |
+
CPMBEE_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
48 |
+
"openbmb/cpm-bee-10b",
|
49 |
+
"openbmb/cpm-bee-5b",
|
50 |
+
"openbmb/cpm-bee-2b",
|
51 |
+
"openbmb/cpm-bee-1b",
|
52 |
+
# See all CPMBee models at https://huggingface.co/models?filter=cpmbee
|
53 |
+
]
|
54 |
+
|
55 |
+
|
56 |
+
class CpmBeeLinear(nn.Linear):
|
57 |
+
def __init__(self, dim_in, dim_out, dtype):
|
58 |
+
"""
|
59 |
+
Construct a linear for CPMBee. It contains a scale operation.
|
60 |
+
"""
|
61 |
+
super().__init__(dim_in, dim_out, bias=False)
|
62 |
+
self.dim_in = self.in_features = dim_in
|
63 |
+
self.dim_out = self.out_features = dim_out
|
64 |
+
|
65 |
+
self.weight = torch.nn.parameter.Parameter(torch.empty((dim_out, dim_in), dtype=dtype))
|
66 |
+
|
67 |
+
def forward(self, x: torch.Tensor):
|
68 |
+
"""
|
69 |
+
Args:
|
70 |
+
x (`torch.Tensor` of shape `(batch, seq_len, dim_in)`): The input of linear layer
|
71 |
+
Returns:
|
72 |
+
`torch.Tensor` of shape `(batch, seq_len, dim_out)`: The output of the linear transform y.
|
73 |
+
"""
|
74 |
+
x = nn.functional.linear(x, self.weight)
|
75 |
+
x = x / math.sqrt(self.dim_in)
|
76 |
+
return x
|
77 |
+
|
78 |
+
|
79 |
+
class CpmBeeLayerNorm(nn.Module):
|
80 |
+
"""
|
81 |
+
We use Root Mean Square (RMS) Layer Normalization, please see https://arxiv.org/abs/1910.07467 for details."
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(self, config: CpmBeeConfig):
|
85 |
+
super().__init__()
|
86 |
+
|
87 |
+
self.eps = config.eps
|
88 |
+
self.dim_norm = config.hidden_size
|
89 |
+
self.weight = nn.Parameter(torch.empty(config.hidden_size, dtype=config.torch_dtype))
|
90 |
+
|
91 |
+
def forward(self, hidden_states: torch.Tensor):
|
92 |
+
"""
|
93 |
+
Args:
|
94 |
+
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
|
95 |
+
"""
|
96 |
+
if hidden_states.size(-1) != self.dim_norm:
|
97 |
+
raise AssertionError("hidden_states.size(-1) != self.dim_norm")
|
98 |
+
old_dtype = hidden_states.dtype
|
99 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
|
100 |
+
hidden_states = (hidden_states * torch.rsqrt(variance + self.eps)).to(old_dtype) * self.weight
|
101 |
+
return hidden_states
|
102 |
+
|
103 |
+
|
104 |
+
class CpmBeeAttention(nn.Module):
|
105 |
+
def __init__(self, config: CpmBeeConfig):
|
106 |
+
super().__init__()
|
107 |
+
self.dim_model = config.hidden_size
|
108 |
+
self.num_heads = config.num_attention_heads
|
109 |
+
self.dim_head = config.dim_head
|
110 |
+
|
111 |
+
self.project_q = CpmBeeLinear(self.dim_model, self.num_heads * self.dim_head, dtype=config.torch_dtype)
|
112 |
+
self.project_k = CpmBeeLinear(self.dim_model, self.num_heads * self.dim_head, dtype=config.torch_dtype)
|
113 |
+
self.project_v = CpmBeeLinear(self.dim_model, self.num_heads * self.dim_head, dtype=config.torch_dtype)
|
114 |
+
|
115 |
+
self.attention_out = CpmBeeLinear(self.num_heads * self.dim_head, self.dim_model, dtype=config.torch_dtype)
|
116 |
+
|
117 |
+
self.softmax = torch.nn.Softmax(dim=-1)
|
118 |
+
|
119 |
+
if config.dropout_p is not None:
|
120 |
+
self.dropout = torch.nn.Dropout(p=config.dropout_p)
|
121 |
+
else:
|
122 |
+
self.dropout = None
|
123 |
+
|
124 |
+
def forward(
|
125 |
+
self,
|
126 |
+
hidden_q: torch.Tensor,
|
127 |
+
hidden_kv: torch.Tensor,
|
128 |
+
attention_mask: torch.BoolTensor,
|
129 |
+
position_bias: torch.Tensor,
|
130 |
+
output_attentions: Optional[bool] = False,
|
131 |
+
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
132 |
+
use_cache: Optional[bool] = None,
|
133 |
+
):
|
134 |
+
"""
|
135 |
+
Args:
|
136 |
+
hidden_q (`torch.Tensor`):
|
137 |
+
Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences.
|
138 |
+
hidden_kv (`torch.Tensor` of shape `(batch, len_k, dim_model)`)):
|
139 |
+
Tensor *key_value* and *query* of shape `(batch, len_k, dim_model)`
|
140 |
+
attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
|
141 |
+
Avoid invalid areas to participate in the calculation of self-attention.
|
142 |
+
position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
|
143 |
+
Provide positional information to self-attention block.
|
144 |
+
output_attentions (`bool`, *optional*):
|
145 |
+
Whether or not to return the attentions tensors of all attention layers.
|
146 |
+
past_key_values (`Tuple[torch.Tensor, torch.Tensor]`, *optional*):
|
147 |
+
Cached past key and value projection states.
|
148 |
+
use_cache (`bool`, *optional*):
|
149 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
150 |
+
(see `past_key_values`).
|
151 |
+
"""
|
152 |
+
batch_size = hidden_q.size(0)
|
153 |
+
len_q = hidden_q.size(1)
|
154 |
+
len_k = hidden_kv.size(1)
|
155 |
+
|
156 |
+
query = self.project_q(hidden_q)
|
157 |
+
key = self.project_k(hidden_kv)
|
158 |
+
value = self.project_v(hidden_kv)
|
159 |
+
|
160 |
+
query = query.view(batch_size, len_q, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
|
161 |
+
key = key.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
|
162 |
+
value = value.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
|
163 |
+
|
164 |
+
if past_key_values is not None:
|
165 |
+
key = torch.cat([past_key_values[0], key], dim=-2)
|
166 |
+
value = torch.cat([past_key_values[1], value], dim=-2)
|
167 |
+
len_k = key.size(-2)
|
168 |
+
|
169 |
+
# (batch_size, num_heads, len_q, dim_head) @ (batch_size, num_heads, dim_head, len_k) -> (batch_size, num_heads, len_q, len_k)
|
170 |
+
score = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.dim_head)
|
171 |
+
score = score + position_bias
|
172 |
+
|
173 |
+
score = torch.masked_fill(
|
174 |
+
score,
|
175 |
+
attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False),
|
176 |
+
torch.scalar_tensor(float("-inf"), device=score.device, dtype=score.dtype),
|
177 |
+
)
|
178 |
+
score = self.softmax(score)
|
179 |
+
|
180 |
+
score = torch.masked_fill(
|
181 |
+
score,
|
182 |
+
attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False),
|
183 |
+
torch.scalar_tensor(0, device=score.device, dtype=score.dtype),
|
184 |
+
)
|
185 |
+
if output_attentions:
|
186 |
+
attn_weights = score
|
187 |
+
else:
|
188 |
+
attn_weights = None
|
189 |
+
|
190 |
+
if self.dropout is not None:
|
191 |
+
score = self.dropout(score)
|
192 |
+
|
193 |
+
# (batch_size, num_heads, len_q, len_k) @ (batch_size, num_heads, len_k, dim_head) -> (batch_size, num_heads, len_q, dim_head)
|
194 |
+
score = torch.matmul(score, value)
|
195 |
+
|
196 |
+
score = score.view(batch_size, self.num_heads, len_q, self.dim_head).permute(0, 2, 1, 3)
|
197 |
+
score = score.contiguous().view(batch_size, len_q, self.num_heads * self.dim_head)
|
198 |
+
|
199 |
+
score = self.attention_out(score)
|
200 |
+
|
201 |
+
past_key_values = None
|
202 |
+
if use_cache:
|
203 |
+
past_key_values = (key, value)
|
204 |
+
|
205 |
+
return score, attn_weights, past_key_values
|
206 |
+
|
207 |
+
|
208 |
+
class CpmBeeSelfAttentionBlock(nn.Module):
|
209 |
+
def __init__(self, config: CpmBeeConfig):
|
210 |
+
super().__init__()
|
211 |
+
self.layernorm_before_attention = CpmBeeLayerNorm(config)
|
212 |
+
self.self_attention = CpmBeeAttention(config)
|
213 |
+
if config.dropout_p:
|
214 |
+
self.dropout = torch.nn.Dropout(config.dropout_p)
|
215 |
+
else:
|
216 |
+
self.dropout = None
|
217 |
+
|
218 |
+
def forward(
|
219 |
+
self,
|
220 |
+
hidden_states: torch.Tensor,
|
221 |
+
attention_mask: torch.Tensor,
|
222 |
+
position_bias: Optional[torch.Tensor] = None,
|
223 |
+
output_attentions: Optional[bool] = False,
|
224 |
+
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
225 |
+
use_cache: Optional[bool] = None,
|
226 |
+
):
|
227 |
+
"""
|
228 |
+
Args:
|
229 |
+
hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`):
|
230 |
+
Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences.
|
231 |
+
attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
|
232 |
+
Avoid invalid areas to participate in the calculation of self-attention.
|
233 |
+
position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
|
234 |
+
Provide positional information to self-attention block.
|
235 |
+
output_attentions (`bool`, *optional*):
|
236 |
+
Whether or not to return the attentions tensors of all attention layers.
|
237 |
+
past_key_values (`Tuple(torch.FloatTensor)`, *optional*):
|
238 |
+
Cached past key and value projection states.
|
239 |
+
use_cache (`bool`, *optional*):
|
240 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
241 |
+
(see `past_key_values`).
|
242 |
+
"""
|
243 |
+
outputs = self.layernorm_before_attention(hidden_states)
|
244 |
+
outputs = self.self_attention(
|
245 |
+
outputs, outputs, attention_mask, position_bias, output_attentions, past_key_values, use_cache
|
246 |
+
)
|
247 |
+
|
248 |
+
outputs, attn_weights, current_key_value = outputs
|
249 |
+
|
250 |
+
if self.dropout is not None:
|
251 |
+
outputs = self.dropout(outputs)
|
252 |
+
hidden_states = (hidden_states + outputs) / 1.05
|
253 |
+
|
254 |
+
return hidden_states, attn_weights, current_key_value
|
255 |
+
|
256 |
+
|
257 |
+
class CpmBeeDenseGatedACT(nn.Module):
|
258 |
+
def __init__(self, config: CpmBeeConfig):
|
259 |
+
super().__init__()
|
260 |
+
self.w_0 = CpmBeeLinear(config.hidden_size, config.dim_ff, dtype=config.torch_dtype)
|
261 |
+
self.w_1 = CpmBeeLinear(config.hidden_size, config.dim_ff, dtype=config.torch_dtype)
|
262 |
+
self.act = torch.nn.GELU()
|
263 |
+
|
264 |
+
def forward(self, hidden_states: torch.Tensor):
|
265 |
+
"""Transform an input tensor from one feature space to another via a nonlinear operation
|
266 |
+
|
267 |
+
Args:
|
268 |
+
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
|
269 |
+
"""
|
270 |
+
gate_score = self.act(self.w_0(hidden_states))
|
271 |
+
hidden_states = self.w_1(hidden_states)
|
272 |
+
|
273 |
+
hidden_states = gate_score * hidden_states
|
274 |
+
return hidden_states
|
275 |
+
|
276 |
+
|
277 |
+
class CpmBeeFeedForward(nn.Module):
|
278 |
+
def __init__(self, config: CpmBeeConfig):
|
279 |
+
super().__init__()
|
280 |
+
self.w_in = CpmBeeDenseGatedACT(config)
|
281 |
+
if config.dropout_p is not None:
|
282 |
+
self.dropout = torch.nn.Dropout(config.dropout_p)
|
283 |
+
else:
|
284 |
+
self.dropout = None
|
285 |
+
|
286 |
+
self.w_out = CpmBeeLinear(config.dim_ff, config.hidden_size, dtype=config.torch_dtype)
|
287 |
+
|
288 |
+
def forward(self, hidden_states: torch.Tensor):
|
289 |
+
"""
|
290 |
+
Args:
|
291 |
+
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
|
292 |
+
"""
|
293 |
+
hidden_states = self.w_in(hidden_states)
|
294 |
+
|
295 |
+
if self.dropout is not None:
|
296 |
+
hidden_states = self.dropout(hidden_states)
|
297 |
+
|
298 |
+
hidden_states = self.w_out(hidden_states)
|
299 |
+
|
300 |
+
return hidden_states
|
301 |
+
|
302 |
+
|
303 |
+
class CpmBeeFFNBlock(nn.Module):
|
304 |
+
def __init__(self, config: CpmBeeConfig):
|
305 |
+
super().__init__()
|
306 |
+
self.layernorm_before_ffn = CpmBeeLayerNorm(config)
|
307 |
+
self.ffn = CpmBeeFeedForward(config)
|
308 |
+
if config.dropout_p:
|
309 |
+
self.dropout = torch.nn.Dropout(config.dropout_p)
|
310 |
+
else:
|
311 |
+
self.dropout = None
|
312 |
+
|
313 |
+
def forward(
|
314 |
+
self,
|
315 |
+
hidden_states: torch.Tensor,
|
316 |
+
):
|
317 |
+
"""
|
318 |
+
Args:
|
319 |
+
hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`):
|
320 |
+
Hidden states before feed forward layer.
|
321 |
+
"""
|
322 |
+
ln_outputs = self.layernorm_before_ffn(hidden_states)
|
323 |
+
outputs = self.ffn(ln_outputs)
|
324 |
+
if self.dropout is not None:
|
325 |
+
outputs = self.dropout(outputs)
|
326 |
+
hidden_states = (hidden_states + outputs) / 1.05
|
327 |
+
return hidden_states
|
328 |
+
|
329 |
+
|
330 |
+
class CpmBeeTransformerBlock(nn.Module):
|
331 |
+
def __init__(self, config: CpmBeeConfig, mask_att: bool = False, mask_ffn: bool = False):
|
332 |
+
super().__init__()
|
333 |
+
self.mask_att = mask_att
|
334 |
+
self.mask_ffn = mask_ffn
|
335 |
+
|
336 |
+
if not self.mask_att:
|
337 |
+
self.self_att = CpmBeeSelfAttentionBlock(config)
|
338 |
+
if not self.mask_ffn:
|
339 |
+
self.ffn = CpmBeeFFNBlock(config)
|
340 |
+
|
341 |
+
def forward(
|
342 |
+
self,
|
343 |
+
hidden_states: torch.Tensor,
|
344 |
+
attention_mask: torch.Tensor,
|
345 |
+
position_bias: Optional[torch.Tensor] = None,
|
346 |
+
output_attentions: Optional[bool] = False,
|
347 |
+
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
348 |
+
use_cache: Optional[bool] = None,
|
349 |
+
):
|
350 |
+
"""
|
351 |
+
Args:
|
352 |
+
hidden_states (`torch.Tensor`):
|
353 |
+
Input to the layer of shape `(batch, seq_len, dim_model)`
|
354 |
+
attention_mask (`torch.Tensor`):
|
355 |
+
Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)`
|
356 |
+
position_bias (`torch.Tensor`):
|
357 |
+
Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)`
|
358 |
+
output_attentions (`bool`, *optional*):
|
359 |
+
Whether or not to return the attentions tensors of all attention layers.
|
360 |
+
past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*):
|
361 |
+
Cached past key and value projection states
|
362 |
+
use_cache (`bool`, *optional*):
|
363 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
364 |
+
(see `past_key_values`).
|
365 |
+
"""
|
366 |
+
if not self.mask_att:
|
367 |
+
hidden_states = self.self_att(
|
368 |
+
hidden_states,
|
369 |
+
attention_mask=attention_mask,
|
370 |
+
position_bias=position_bias,
|
371 |
+
output_attentions=output_attentions,
|
372 |
+
past_key_values=past_key_values,
|
373 |
+
use_cache=use_cache,
|
374 |
+
)
|
375 |
+
|
376 |
+
hidden_states, attn_weights, current_key_value = hidden_states
|
377 |
+
else:
|
378 |
+
attn_weights, current_key_value = None, (None, None)
|
379 |
+
|
380 |
+
if not self.mask_ffn:
|
381 |
+
hidden_states = self.ffn(hidden_states)
|
382 |
+
|
383 |
+
return hidden_states, attn_weights, current_key_value
|
384 |
+
|
385 |
+
|
386 |
+
class CpmBeeEncoder(nn.Module):
|
387 |
+
def __init__(self, config: CpmBeeConfig):
|
388 |
+
super().__init__()
|
389 |
+
self.num_layers = config.num_hidden_layers
|
390 |
+
if config.mask_modules is not None:
|
391 |
+
assert len(config.mask_modules) == self.num_layers, "The total number of masks should equal to num_layers"
|
392 |
+
for mask_module in config.mask_modules:
|
393 |
+
assert len(mask_module) == 2, "For encoder, each mask should be (mask_att, mask_ffn)"
|
394 |
+
else:
|
395 |
+
config.mask_modules = [(False, False)] * self.num_layers
|
396 |
+
|
397 |
+
self.layers = nn.ModuleList(
|
398 |
+
[
|
399 |
+
CpmBeeTransformerBlock(
|
400 |
+
config, mask_att=config.mask_modules[ith][0], mask_ffn=config.mask_modules[ith][1]
|
401 |
+
)
|
402 |
+
for ith in range(self.num_layers)
|
403 |
+
]
|
404 |
+
)
|
405 |
+
|
406 |
+
self.output_layernorm = CpmBeeLayerNorm(config)
|
407 |
+
|
408 |
+
def forward(
|
409 |
+
self,
|
410 |
+
hidden_states: torch.Tensor,
|
411 |
+
attention_mask: torch.Tensor,
|
412 |
+
position_bias: torch.Tensor,
|
413 |
+
output_attentions: Optional[bool] = None,
|
414 |
+
output_hidden_states: Optional[bool] = None,
|
415 |
+
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
416 |
+
use_cache: Optional[bool] = None,
|
417 |
+
):
|
418 |
+
"""
|
419 |
+
Args:
|
420 |
+
hidden_states (`torch.Tensor`):
|
421 |
+
Input to the layer of shape `(batch, seq_len, dim_model)`
|
422 |
+
attention_mask (`torch.Tensor`):
|
423 |
+
Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)`
|
424 |
+
position_bias (`torch.Tensor`):
|
425 |
+
Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)`
|
426 |
+
output_attentions (`bool`, *optional*):
|
427 |
+
Whether or not to return the attentions tensors of all attention layers.
|
428 |
+
output_hidden_states (`bool`, *optional*):
|
429 |
+
Whether or not to return the hidden states of all layers.
|
430 |
+
past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*):
|
431 |
+
Cached past key and value projection states
|
432 |
+
use_cache (`bool`, *optional*):
|
433 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
434 |
+
(see `past_key_values`).
|
435 |
+
"""
|
436 |
+
all_hidden_states = () if output_hidden_states else None
|
437 |
+
all_self_attns = () if output_attentions else None
|
438 |
+
current_key_values = () if use_cache else None
|
439 |
+
|
440 |
+
for i, layer in enumerate(self.layers):
|
441 |
+
if output_hidden_states:
|
442 |
+
all_hidden_states += (hidden_states,)
|
443 |
+
layer_outputs = layer(
|
444 |
+
hidden_states,
|
445 |
+
attention_mask,
|
446 |
+
position_bias,
|
447 |
+
output_attentions=output_attentions,
|
448 |
+
past_key_values=past_key_values[i] if past_key_values else None,
|
449 |
+
use_cache=use_cache,
|
450 |
+
)
|
451 |
+
hidden_states, attn_weights, current_key_value = layer_outputs
|
452 |
+
if output_attentions:
|
453 |
+
all_self_attns += (attn_weights,)
|
454 |
+
if current_key_value is not None:
|
455 |
+
current_key_values = current_key_values + (current_key_value,)
|
456 |
+
|
457 |
+
hidden_states = self.output_layernorm(hidden_states)
|
458 |
+
|
459 |
+
if output_hidden_states:
|
460 |
+
all_hidden_states += (hidden_states,)
|
461 |
+
|
462 |
+
return hidden_states, current_key_values, all_hidden_states, all_self_attns
|
463 |
+
|
464 |
+
|
465 |
+
class CpmBeeBucketPositionBias(nn.Module):
|
466 |
+
def __init__(self, config: CpmBeeConfig) -> None:
|
467 |
+
super().__init__()
|
468 |
+
|
469 |
+
self.num_heads = config.num_attention_heads
|
470 |
+
self.num_buckets = config.position_bias_num_buckets
|
471 |
+
self.num_segment_bucket = config.position_bias_num_segment_buckets
|
472 |
+
self.max_distance = config.position_bias_max_distance
|
473 |
+
|
474 |
+
self.relative_attention_bias = nn.Parameter(
|
475 |
+
torch.empty(
|
476 |
+
config.position_bias_num_buckets + config.position_bias_num_segment_buckets,
|
477 |
+
config.num_attention_heads,
|
478 |
+
dtype=config.torch_dtype,
|
479 |
+
),
|
480 |
+
)
|
481 |
+
|
482 |
+
def forward(self, query_pos: torch.Tensor, key_pos: torch.Tensor, rel_buckets: torch.Tensor):
|
483 |
+
with torch.no_grad():
|
484 |
+
batch = key_pos.size(0)
|
485 |
+
keylen = key_pos.size(1)
|
486 |
+
querylen = query_pos.size(1)
|
487 |
+
|
488 |
+
if key_pos.size(0) != query_pos.size(0):
|
489 |
+
raise AssertionError(
|
490 |
+
f"key_pos.size(0) should be equal to query_pos.size(0), but got {key_pos.size(0)} and {query_pos.size(0)}!"
|
491 |
+
)
|
492 |
+
if rel_buckets.size(0) != batch:
|
493 |
+
raise AssertionError(
|
494 |
+
f"rel_buckets.size(0) should be equal to batch, but got {rel_buckets.size(0)} and {batch}!"
|
495 |
+
)
|
496 |
+
if rel_buckets.size(1) != querylen:
|
497 |
+
raise AssertionError(
|
498 |
+
f"rel_buckets.size(1) should be equal to querylen, but got {rel_buckets.size(1)} and {querylen}!"
|
499 |
+
)
|
500 |
+
if rel_buckets.size(2) != keylen:
|
501 |
+
raise AssertionError(
|
502 |
+
f"rel_buckets.size(2) should be equal to keylen, but got {rel_buckets.size(2)} and {keylen}!"
|
503 |
+
)
|
504 |
+
|
505 |
+
relative_position_bucket = rel_buckets - 1 + self.num_buckets
|
506 |
+
|
507 |
+
inner_segment_bucket = self._position_bucket(
|
508 |
+
key_pos[..., None, :] - query_pos[..., :, None],
|
509 |
+
num_buckets=self.num_buckets,
|
510 |
+
max_distance=self.max_distance,
|
511 |
+
)
|
512 |
+
relative_position_bucket = torch.where(
|
513 |
+
rel_buckets == 0,
|
514 |
+
inner_segment_bucket,
|
515 |
+
relative_position_bucket,
|
516 |
+
)
|
517 |
+
|
518 |
+
embeds = nn.functional.embedding(relative_position_bucket, self.relative_attention_bias)
|
519 |
+
embeds = embeds.permute(0, 3, 1, 2).contiguous()
|
520 |
+
return embeds
|
521 |
+
|
522 |
+
def _position_bucket(self, relative_position, num_buckets=32, max_distance=128):
|
523 |
+
relative_buckets = 0
|
524 |
+
num_buckets //= 2
|
525 |
+
relative_buckets = (relative_position > 0).to(torch.int32) * num_buckets
|
526 |
+
relative_position = torch.abs(relative_position)
|
527 |
+
max_exact = num_buckets // 2
|
528 |
+
is_small = relative_position < max_exact
|
529 |
+
relative_postion_if_large = max_exact + (
|
530 |
+
torch.log(relative_position.float() / max_exact)
|
531 |
+
/ math.log(max_distance / max_exact)
|
532 |
+
* (num_buckets - max_exact)
|
533 |
+
).to(torch.int32)
|
534 |
+
relative_postion_if_large = torch.min(
|
535 |
+
relative_postion_if_large,
|
536 |
+
torch.full_like(relative_postion_if_large, num_buckets - 1),
|
537 |
+
)
|
538 |
+
relative_buckets += torch.where(is_small, relative_position.to(torch.int32), relative_postion_if_large)
|
539 |
+
return relative_buckets
|
540 |
+
|
541 |
+
|
542 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->CPMBee
|
543 |
+
class CpmBeeOutput(nn.Module):
|
544 |
+
def __init__(self, config):
|
545 |
+
super().__init__()
|
546 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
547 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
548 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
549 |
+
|
550 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
551 |
+
hidden_states = self.dense(hidden_states)
|
552 |
+
hidden_states = self.dropout(hidden_states)
|
553 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
554 |
+
return hidden_states
|
555 |
+
|
556 |
+
|
557 |
+
class CpmBeeRotaryEmbedding(nn.Module):
|
558 |
+
"""
|
559 |
+
RotaryEmbedding embeds the unk token and special token. It will embeds the "...<mask>...<mask>...<unk>...<unk>..."
|
560 |
+
to "...<mask_0>...<mask_1>...<unk_0>...<unk_1>..."" to help model to specify different special tokens and unk
|
561 |
+
tokens.
|
562 |
+
"""
|
563 |
+
|
564 |
+
def __init__(self, config: CpmBeeConfig):
|
565 |
+
super().__init__()
|
566 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, config.hidden_size, 2, dtype=torch.float32) / config.hidden_size))
|
567 |
+
self.distance_scale = config.distance_scale
|
568 |
+
self.dtype = config.torch_dtype
|
569 |
+
self.inv_freq = inv_freq.to(config.torch_dtype)
|
570 |
+
|
571 |
+
def forward(self, x: torch.Tensor, x_pos: torch.Tensor):
|
572 |
+
inv_freq = self.inv_freq.to(device=x.device, dtype=self.dtype)
|
573 |
+
|
574 |
+
x_pos = x_pos * self.distance_scale
|
575 |
+
freqs = x_pos[..., None].to(self.dtype) * inv_freq[None, :] # (..., dim/2)
|
576 |
+
|
577 |
+
emb = torch.cat((freqs, freqs), dim=-1) # (..., dim)
|
578 |
+
emb_cos = emb.cos() # (..., dim)
|
579 |
+
emb_sin = emb.sin() # (..., dim)
|
580 |
+
|
581 |
+
rotate_x = torch.cat([-x[..., x.size(-1) // 2 :], x[..., : x.size(-1) // 2]], dim=-1) # (..., dim)
|
582 |
+
|
583 |
+
return x * emb_cos + rotate_x * emb_sin
|
584 |
+
|
585 |
+
|
586 |
+
class CpmBeeEmbeddingExt(nn.Embedding):
|
587 |
+
"""
|
588 |
+
Contains a RotaryEmbedding.
|
589 |
+
"""
|
590 |
+
|
591 |
+
def __init__(self, config: CpmBeeConfig):
|
592 |
+
super().__init__(config.vocab_size, config.hidden_size, dtype=config.torch_dtype)
|
593 |
+
self.dim_model = config.hidden_size
|
594 |
+
self.rotary_emb = CpmBeeRotaryEmbedding(config)
|
595 |
+
|
596 |
+
def forward(self, ids: torch.Tensor, ids_sub: torch.Tensor):
|
597 |
+
embeds = super().forward(ids) / math.sqrt(self.dim_model)
|
598 |
+
return self.rotary_emb(embeds, ids_sub)
|
599 |
+
|
600 |
+
def projection(self, x: torch.Tensor, ext_table: Optional[torch.Tensor] = None):
|
601 |
+
logits = nn.functional.linear(x / math.sqrt(self.dim_model), self.weight)
|
602 |
+
if ext_table is not None:
|
603 |
+
logits_ext = nn.functional.linear(x, ext_table)
|
604 |
+
logits = torch.cat([logits, logits_ext], dim=-1)
|
605 |
+
return logits
|
606 |
+
|
607 |
+
|
608 |
+
class CpmBeePreTrainedModel(PreTrainedModel):
|
609 |
+
"""
|
610 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
611 |
+
models.
|
612 |
+
"""
|
613 |
+
|
614 |
+
config_class = CpmBeeConfig
|
615 |
+
base_model_prefix = "cpmbee"
|
616 |
+
supports_gradient_checkpointing = True
|
617 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
618 |
+
|
619 |
+
def _init_weights(self, module):
|
620 |
+
"""Initialize the weights"""
|
621 |
+
if isinstance(module, nn.Linear):
|
622 |
+
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
|
623 |
+
if module.bias is not None:
|
624 |
+
module.bias.data.zero_()
|
625 |
+
# still needed
|
626 |
+
elif isinstance(module, CpmBeeEmbeddingExt):
|
627 |
+
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
|
628 |
+
elif isinstance(module, nn.LayerNorm):
|
629 |
+
module.bias.data.zero_()
|
630 |
+
module.weight.data.fill_(1.0)
|
631 |
+
elif isinstance(module, CpmBeeLayerNorm):
|
632 |
+
module.weight.data.fill_(1.0)
|
633 |
+
elif isinstance(module, CpmBeeBucketPositionBias):
|
634 |
+
module.relative_attention_bias.data.normal_(mean=0.0, std=self.config.init_std)
|
635 |
+
|
636 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
637 |
+
if isinstance(module, CpmBeeEncoder):
|
638 |
+
module.gradient_checkpointing = value
|
639 |
+
|
640 |
+
|
641 |
+
CPMBEE_START_DOCSTRING = r"""
|
642 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
643 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
644 |
+
behavior.
|
645 |
+
|
646 |
+
Parameters
|
647 |
+
config ([`~CpmBeeConfig`]): Model configuration class with all the parameters of the
|
648 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
649 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
650 |
+
"""
|
651 |
+
|
652 |
+
CPMBEE_INPUTS_DOCSTRING = r"""
|
653 |
+
Args:
|
654 |
+
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
655 |
+
Indices of input sequence tokens in the vocabulary.
|
656 |
+
|
657 |
+
Indices can be obtained using [`CPMBeeTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
658 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
659 |
+
|
660 |
+
[What are input IDs?](../glossary#input-ids)
|
661 |
+
input_id_sub (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
662 |
+
Subscription of input sequence tokens in the vocabulary.
|
663 |
+
|
664 |
+
Subscription of normal text will be zero while the special tokens of each group will be the 0, 1, 2, ...
|
665 |
+
<ans_0>, <ans_1>, <ans_2> ... belongs to group <ans>. <mask_0>, <mask_1>, <mask_2> ... belongs to group
|
666 |
+
<mask>.
|
667 |
+
position (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
668 |
+
The position of input sequence tokens in the vocabulary for each segment. if segment1 is 0, 1, 2 and
|
669 |
+
segment2 is 0, 1, 2, 3, the position will be 0, 1, 2, 0, 1, 2, 3
|
670 |
+
context (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
671 |
+
Whether this token id is context or not. If is context, the value is 1. If not, the value is 0. If a token
|
672 |
+
id is context, it does not need to be predicted.
|
673 |
+
sample_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
674 |
+
Give a sample id to every token id. The token ids with same sample ids belongs to the same sample.
|
675 |
+
num_segments (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
676 |
+
Total number of segments in the current input.
|
677 |
+
segment (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
678 |
+
Give a segment id to every token id. The token ids with same segment ids belongs to the same sample.
|
679 |
+
|
680 |
+
Generally, a string key or value in input data will be a segment. For example, input {"input": "hello, ",
|
681 |
+
"<ans>": ""}, the segments includes: "input", "hello, ", "<ans>" and "".
|
682 |
+
segment_rel_offset (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
683 |
+
The offset of segment rel.
|
684 |
+
segment_rel (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
685 |
+
The segment relevance. A relative implementation of measuring the importance of segments.
|
686 |
+
past_states (`Dict[str, Union[torch.Tensor, List]]`):
|
687 |
+
Store the history information including position, context, sample_ids, num_segments, segment and
|
688 |
+
past_key_values.
|
689 |
+
output_attentions (`bool`, *optional*):
|
690 |
+
Whether or not to return the attentions tensors of all attention layers.
|
691 |
+
output_hidden_states (`bool`, *optional*):
|
692 |
+
Whether or not to return the hidden states of all layers.
|
693 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
694 |
+
A dummy arguments for CPMBee. The `past_states` contains pre-computed hidden-states (key and values in the
|
695 |
+
self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) and
|
696 |
+
other history arguments to speed up sequential decoding.
|
697 |
+
use_cache (`bool`, *optional*):
|
698 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
699 |
+
`past_key_values`).
|
700 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
701 |
+
Labels for computing the masked language modeling loss.
|
702 |
+
return_dict (`bool`, *optional*):
|
703 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
704 |
+
"""
|
705 |
+
|
706 |
+
|
707 |
+
@add_start_docstrings(
|
708 |
+
"The bare CPMBee Model outputting raw hidden-states without any specific head on top.",
|
709 |
+
CPMBEE_START_DOCSTRING,
|
710 |
+
)
|
711 |
+
class CpmBeeModel(CpmBeePreTrainedModel):
|
712 |
+
def __init__(self, config: CpmBeeConfig):
|
713 |
+
super().__init__(config)
|
714 |
+
if config.half:
|
715 |
+
config.torch_dtype = torch.half
|
716 |
+
else:
|
717 |
+
config.torch_dtype = torch.float
|
718 |
+
self.encoder = CpmBeeEncoder(config)
|
719 |
+
self.input_embedding = CpmBeeEmbeddingExt(config)
|
720 |
+
self.position_bias = CpmBeeBucketPositionBias(config)
|
721 |
+
self.vocab_size = config.vocab_size
|
722 |
+
self.post_init()
|
723 |
+
|
724 |
+
def get_input_embeddings(self):
|
725 |
+
return self.input_embedding
|
726 |
+
|
727 |
+
def set_input_embeddings(self, embeddings, **kwargs):
|
728 |
+
self.input_embedding = embeddings
|
729 |
+
|
730 |
+
@add_start_docstrings_to_model_forward(CPMBEE_INPUTS_DOCSTRING)
|
731 |
+
@add_code_sample_docstrings(
|
732 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
733 |
+
output_type=BaseModelOutputWithPast,
|
734 |
+
config_class=_CONFIG_FOR_DOC,
|
735 |
+
)
|
736 |
+
def forward(
|
737 |
+
self,
|
738 |
+
input_ids: torch.Tensor,
|
739 |
+
input_id_sub: Optional[torch.Tensor] = None,
|
740 |
+
position: Optional[torch.Tensor] = None,
|
741 |
+
context: Optional[torch.Tensor] = None,
|
742 |
+
sample_ids: Optional[torch.Tensor] = None,
|
743 |
+
num_segments: Optional[torch.Tensor] = None,
|
744 |
+
segment: Optional[torch.Tensor] = None,
|
745 |
+
segment_rel_offset: Optional[torch.Tensor] = None,
|
746 |
+
segment_rel: Optional[torch.Tensor] = None,
|
747 |
+
past_states: Optional[Dict] = None,
|
748 |
+
output_attentions: Optional[bool] = None,
|
749 |
+
output_hidden_states: Optional[bool] = None,
|
750 |
+
past_key_values: Optional[List] = None,
|
751 |
+
use_cache: Optional[bool] = None,
|
752 |
+
return_dict: Optional[bool] = None,
|
753 |
+
**kwargs,
|
754 |
+
):
|
755 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
756 |
+
output_hidden_states = (
|
757 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
758 |
+
)
|
759 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
760 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
761 |
+
|
762 |
+
# dummy setting for common tests
|
763 |
+
if input_id_sub is None:
|
764 |
+
dtype, device = input_ids.dtype, input_ids.device
|
765 |
+
batch, seq_length = input_ids.size()
|
766 |
+
segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device)
|
767 |
+
context = torch.full((batch, seq_length), 1, dtype=dtype, device=device)
|
768 |
+
position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1)
|
769 |
+
input_id_sub = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
|
770 |
+
segment_rel_offset = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
|
771 |
+
segment_rel = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
|
772 |
+
num_segments = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
|
773 |
+
sample_ids = torch.zeros_like(input_ids)
|
774 |
+
|
775 |
+
with torch.no_grad():
|
776 |
+
if past_states is None:
|
777 |
+
present_position = position
|
778 |
+
present_context = context
|
779 |
+
present_sample_ids = sample_ids
|
780 |
+
present_num_segments = num_segments
|
781 |
+
present_segments = segment
|
782 |
+
present_buffer = None
|
783 |
+
else:
|
784 |
+
present_position = torch.cat([past_states["buffer_position"], position], dim=-1)
|
785 |
+
present_context = torch.cat([past_states["buffer_context"], context], dim=-1)
|
786 |
+
present_sample_ids = torch.cat([past_states["buffer_sample_ids"], sample_ids], dim=-1)
|
787 |
+
present_num_segments = torch.cat([past_states["buffer_num_segments"], num_segments], dim=-1)
|
788 |
+
present_segments = torch.cat([past_states["buffer_segments"], segment], dim=-1)
|
789 |
+
present_buffer = past_states["buffer"]
|
790 |
+
|
791 |
+
batch = input_ids.size(0)
|
792 |
+
len_q = input_ids.size(1)
|
793 |
+
len_buffer = present_position.size(1)
|
794 |
+
|
795 |
+
segment_rel_2d = torch.masked_fill(
|
796 |
+
segment[:, :, None] * num_segments[:, :, None]
|
797 |
+
+ present_segments[:, None, :]
|
798 |
+
+ segment_rel_offset[:, :, None],
|
799 |
+
~((sample_ids[:, :, None] == present_sample_ids[:, None, :])), # not in the same sample
|
800 |
+
0, # avoid torch.gather overflow
|
801 |
+
).view(batch, len_q * len_buffer)
|
802 |
+
|
803 |
+
segment_bucket = torch.gather(
|
804 |
+
input=segment_rel,
|
805 |
+
dim=1,
|
806 |
+
index=segment_rel_2d.long(),
|
807 |
+
).view(batch, len_q, len_buffer)
|
808 |
+
|
809 |
+
segment_bucket.masked_fill_(
|
810 |
+
~((sample_ids[:, :, None] == present_sample_ids[:, None, :])), # not in the same span or sample
|
811 |
+
1, # bucket is used for in-context samples
|
812 |
+
)
|
813 |
+
|
814 |
+
# directional mask
|
815 |
+
directional_mask_2d = present_position[:, None, :] <= position[:, :, None]
|
816 |
+
# sample mask
|
817 |
+
sample_mask_2d = (sample_ids[:, :, None] == 0) | (sample_ids[:, :, None] == present_sample_ids[:, None, :])
|
818 |
+
# context mask
|
819 |
+
attention_mask = present_context[:, None, :] | (
|
820 |
+
context[:, :, None].logical_not() & directional_mask_2d.view(batch, len_q, len_buffer)
|
821 |
+
)
|
822 |
+
# span mask
|
823 |
+
attention_mask = attention_mask & sample_mask_2d
|
824 |
+
# length mask
|
825 |
+
mask_1d = present_num_segments != 0
|
826 |
+
attention_mask = mask_1d.view(batch, 1, len_buffer) & attention_mask
|
827 |
+
|
828 |
+
hidden_states = self.input_embedding(input_ids, input_id_sub)
|
829 |
+
position_bias = self.position_bias(position, present_position, segment_bucket)
|
830 |
+
hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder(
|
831 |
+
hidden_states,
|
832 |
+
attention_mask,
|
833 |
+
position_bias,
|
834 |
+
output_attentions,
|
835 |
+
output_hidden_states,
|
836 |
+
present_buffer,
|
837 |
+
use_cache,
|
838 |
+
)
|
839 |
+
|
840 |
+
if not return_dict:
|
841 |
+
return tuple(
|
842 |
+
v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None
|
843 |
+
)
|
844 |
+
|
845 |
+
return BaseModelOutputWithPast(
|
846 |
+
last_hidden_state=hidden_states,
|
847 |
+
past_key_values=present_key_values,
|
848 |
+
hidden_states=all_hidden_states,
|
849 |
+
attentions=all_attentions,
|
850 |
+
)
|
851 |
+
|
852 |
+
|
853 |
+
class CpmBeeBeamHypotheses(BeamHypotheses):
|
854 |
+
def __init__(self, num_beams: int, length_penalty: float, early_stopping: bool, max_length: Optional[int] = None):
|
855 |
+
"""
|
856 |
+
Override BeamHypotheses for CpmBee. The hyp to add is list but not tensor.
|
857 |
+
"""
|
858 |
+
super().__init__(num_beams, length_penalty, early_stopping, max_length)
|
859 |
+
|
860 |
+
def add(self, hyp: List, sum_logprobs: float, beam_indices: Optional[torch.LongTensor] = None):
|
861 |
+
"""
|
862 |
+
Add a new hypothesis to the list.
|
863 |
+
"""
|
864 |
+
score = sum_logprobs / (len(hyp) ** self.length_penalty)
|
865 |
+
if len(self) < self.num_beams or score > self.worst_score:
|
866 |
+
self.beams.append((score, hyp, beam_indices))
|
867 |
+
if len(self) > self.num_beams:
|
868 |
+
sorted_next_scores = sorted([(s, idx) for idx, (s, _, _) in enumerate(self.beams)])
|
869 |
+
del self.beams[sorted_next_scores[0][1]]
|
870 |
+
self.worst_score = sorted_next_scores[1][0]
|
871 |
+
else:
|
872 |
+
self.worst_score = min(score, self.worst_score)
|
873 |
+
|
874 |
+
|
875 |
+
class CpmBeeBeamSearchScorer(BeamSearchScorer):
|
876 |
+
"""
|
877 |
+
Override BeamSearchScorer for CPMBee to support:
|
878 |
+
1. Replace beam_tokens by beam_states, containing `idx`, `ans`, `nx_token_id`...
|
879 |
+
2. The `process` will update the beam_states
|
880 |
+
3. The `finalize` will just return the best hypotheses as a list.
|
881 |
+
"""
|
882 |
+
|
883 |
+
def __init__(
|
884 |
+
self,
|
885 |
+
batch_size: int,
|
886 |
+
num_beams: int,
|
887 |
+
device: torch.device,
|
888 |
+
length_penalty: Optional[float] = 1.0,
|
889 |
+
do_early_stopping: Optional[Union[bool, str]] = False,
|
890 |
+
num_beam_hyps_to_keep: Optional[int] = 1,
|
891 |
+
num_beam_groups: Optional[int] = 1,
|
892 |
+
max_length: Optional[int] = None,
|
893 |
+
**model_kwargs,
|
894 |
+
):
|
895 |
+
self.num_beams = num_beams
|
896 |
+
self.device = device
|
897 |
+
self.length_penalty = length_penalty
|
898 |
+
self.do_early_stopping = do_early_stopping
|
899 |
+
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
|
900 |
+
self.num_beam_groups = num_beam_groups
|
901 |
+
self.group_size = self.num_beams // self.num_beam_groups
|
902 |
+
|
903 |
+
self._is_init = False
|
904 |
+
self._beam_hyps = [
|
905 |
+
CpmBeeBeamHypotheses(
|
906 |
+
num_beams=self.num_beams,
|
907 |
+
length_penalty=self.length_penalty,
|
908 |
+
early_stopping=self.do_early_stopping,
|
909 |
+
max_length=max_length,
|
910 |
+
)
|
911 |
+
for _ in range(batch_size)
|
912 |
+
]
|
913 |
+
self._done = torch.tensor([False for _ in range(batch_size)], dtype=torch.bool, device=self.device)
|
914 |
+
|
915 |
+
self.beam_states = []
|
916 |
+
for sent_id in range(batch_size):
|
917 |
+
instance_beam_states = []
|
918 |
+
|
919 |
+
for _ in range(self.num_beams):
|
920 |
+
instance_beam_states.append(
|
921 |
+
{
|
922 |
+
"idx": 0,
|
923 |
+
"ans": [],
|
924 |
+
"nx_token_id": 6,
|
925 |
+
"nx_token_sub": 0,
|
926 |
+
"nx_segment_id": model_kwargs["other_info"][sent_id]["predict_segments"][0][0],
|
927 |
+
"nx_position": 0,
|
928 |
+
}
|
929 |
+
)
|
930 |
+
self.beam_states.append(instance_beam_states)
|
931 |
+
|
932 |
+
def process(
|
933 |
+
self,
|
934 |
+
batch_size: int,
|
935 |
+
cur_len: int,
|
936 |
+
_next_scores: torch.FloatTensor,
|
937 |
+
next_scores: torch.FloatTensor,
|
938 |
+
next_tokens: torch.LongTensor,
|
939 |
+
vocab_size: Optional[int] = None,
|
940 |
+
pad_token_id: Optional[int] = None,
|
941 |
+
bos_token_id: Optional[int] = None,
|
942 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
943 |
+
max_length: Optional[int] = None,
|
944 |
+
ext_table_sub_cpu: Optional[torch.Tensor] = None,
|
945 |
+
ext_table_ids_cpu: Optional[torch.Tensor] = None,
|
946 |
+
**model_kwargs,
|
947 |
+
) -> Tuple[torch.Tensor]:
|
948 |
+
next_beam_state = []
|
949 |
+
for sent_id in range(batch_size):
|
950 |
+
self._done[sent_id] = self._done[sent_id] or self._beam_hyps[sent_id].is_done(
|
951 |
+
next_scores[sent_id].max().item(), cur_len
|
952 |
+
)
|
953 |
+
if self._done[sent_id]:
|
954 |
+
next_beam_state.append(
|
955 |
+
[
|
956 |
+
(
|
957 |
+
{
|
958 |
+
"idx": 0,
|
959 |
+
"ans": [],
|
960 |
+
"nx_token_id": pad_token_id,
|
961 |
+
"nx_token_sub": 0,
|
962 |
+
"nx_segment_id": 0,
|
963 |
+
"nx_position": 0,
|
964 |
+
},
|
965 |
+
0,
|
966 |
+
0,
|
967 |
+
)
|
968 |
+
]
|
969 |
+
* self.num_beams
|
970 |
+
)
|
971 |
+
continue
|
972 |
+
|
973 |
+
next_instance_beam_states = []
|
974 |
+
|
975 |
+
for idx, value in zip(next_tokens[sent_id], next_scores[sent_id]):
|
976 |
+
beam_id = torch.div(idx, _next_scores.size(-1), rounding_mode="floor").item()
|
977 |
+
word_id = (idx % _next_scores.size(-1)).item()
|
978 |
+
|
979 |
+
curr_info = self.beam_states[sent_id][beam_id]
|
980 |
+
if (
|
981 |
+
word_id == eos_token_id
|
982 |
+
and (curr_info["idx"] + 1 == len(model_kwargs["other_info"][sent_id]["predict_segments"]))
|
983 |
+
) or cur_len == max_length:
|
984 |
+
self._beam_hyps[sent_id].add(
|
985 |
+
self.beam_states[sent_id][beam_id]["ans"]
|
986 |
+
+ [
|
987 |
+
(
|
988 |
+
word_id,
|
989 |
+
model_kwargs["other_info"][sent_id]["predict_segments"][curr_info["idx"]][1],
|
990 |
+
)
|
991 |
+
],
|
992 |
+
value.item(),
|
993 |
+
)
|
994 |
+
elif word_id == eos_token_id:
|
995 |
+
next_instance_beam_states.append(
|
996 |
+
(
|
997 |
+
{
|
998 |
+
"idx": curr_info["idx"] + 1,
|
999 |
+
"ans": curr_info["ans"]
|
1000 |
+
+ [
|
1001 |
+
(
|
1002 |
+
word_id,
|
1003 |
+
model_kwargs["other_info"][sent_id]["predict_segments"][curr_info["idx"]][1],
|
1004 |
+
)
|
1005 |
+
],
|
1006 |
+
"nx_token_id": bos_token_id,
|
1007 |
+
"nx_token_sub": 0,
|
1008 |
+
"nx_segment_id": model_kwargs["other_info"][sent_id]["predict_segments"][
|
1009 |
+
curr_info["idx"] + 1
|
1010 |
+
][0],
|
1011 |
+
"nx_position": 0,
|
1012 |
+
},
|
1013 |
+
value.item(),
|
1014 |
+
sent_id * self.num_beams + beam_id,
|
1015 |
+
)
|
1016 |
+
)
|
1017 |
+
|
1018 |
+
else:
|
1019 |
+
raw_word_id = word_id
|
1020 |
+
word_id_sub = 0
|
1021 |
+
if word_id >= vocab_size:
|
1022 |
+
word_id -= vocab_size
|
1023 |
+
word_id_sub = int(ext_table_sub_cpu[word_id].item())
|
1024 |
+
word_id = int(ext_table_ids_cpu[word_id].item())
|
1025 |
+
|
1026 |
+
next_instance_beam_states.append(
|
1027 |
+
(
|
1028 |
+
{
|
1029 |
+
"idx": curr_info["idx"],
|
1030 |
+
"ans": curr_info["ans"]
|
1031 |
+
+ [
|
1032 |
+
(
|
1033 |
+
raw_word_id,
|
1034 |
+
model_kwargs["other_info"][sent_id]["predict_segments"][curr_info["idx"]][1],
|
1035 |
+
)
|
1036 |
+
],
|
1037 |
+
"nx_token_id": word_id,
|
1038 |
+
"nx_token_sub": word_id_sub,
|
1039 |
+
"nx_segment_id": curr_info["nx_segment_id"],
|
1040 |
+
"nx_position": curr_info["nx_position"] + 1,
|
1041 |
+
},
|
1042 |
+
value.item(),
|
1043 |
+
sent_id * self.num_beams + beam_id,
|
1044 |
+
)
|
1045 |
+
)
|
1046 |
+
|
1047 |
+
if len(next_instance_beam_states) == self.num_beams:
|
1048 |
+
break
|
1049 |
+
assert len(next_instance_beam_states) == 0 if cur_len == max_length else self.num_beams
|
1050 |
+
next_beam_state.append(next_instance_beam_states)
|
1051 |
+
|
1052 |
+
if cur_len == max_length:
|
1053 |
+
return None
|
1054 |
+
|
1055 |
+
beam_reorder_idx = []
|
1056 |
+
beam_new_scores = []
|
1057 |
+
beam_states = []
|
1058 |
+
for sent_id in range(batch_size):
|
1059 |
+
instance_beam_states = []
|
1060 |
+
for beam_id in range(self.num_beams):
|
1061 |
+
state, value, beam_idx = next_beam_state[sent_id][beam_id]
|
1062 |
+
beam_reorder_idx.append(beam_idx)
|
1063 |
+
beam_new_scores.append(value)
|
1064 |
+
instance_beam_states.append(state)
|
1065 |
+
beam_states.append(instance_beam_states)
|
1066 |
+
self.beam_states = beam_states
|
1067 |
+
|
1068 |
+
return UserDict(
|
1069 |
+
{
|
1070 |
+
"next_beam_scores": torch.tensor(beam_new_scores, device=self.device).view(-1),
|
1071 |
+
"next_beam_states": beam_states,
|
1072 |
+
"next_beam_indices": torch.tensor(beam_reorder_idx, dtype=torch.int32, device=self.device).view(-1),
|
1073 |
+
}
|
1074 |
+
)
|
1075 |
+
|
1076 |
+
def finalize(self) -> Tuple[torch.LongTensor]:
|
1077 |
+
results = []
|
1078 |
+
for _, hypotheses in enumerate(self._beam_hyps):
|
1079 |
+
best_hyp = max(hypotheses.beams, key=lambda x: x[0])[1]
|
1080 |
+
results.append(best_hyp)
|
1081 |
+
return results
|
1082 |
+
|
1083 |
+
@staticmethod
|
1084 |
+
def apply_repetition_penalty(
|
1085 |
+
logits,
|
1086 |
+
batch_size,
|
1087 |
+
num_beams,
|
1088 |
+
prev_output_tokens,
|
1089 |
+
repetition_penalty,
|
1090 |
+
start_idx=None,
|
1091 |
+
end_idx=None,
|
1092 |
+
window_size=None,
|
1093 |
+
):
|
1094 |
+
# only conduct repetition penalty for the output
|
1095 |
+
assert repetition_penalty >= 1, "repetition penalty coefficient should >= 1"
|
1096 |
+
# repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
|
1097 |
+
for i in range(batch_size * num_beams):
|
1098 |
+
if start_idx is None or end_idx is None:
|
1099 |
+
output_tokens = prev_output_tokens[i].tolist()
|
1100 |
+
else:
|
1101 |
+
if end_idx >= start_idx:
|
1102 |
+
if window_size:
|
1103 |
+
output_tokens = prev_output_tokens[i][
|
1104 |
+
max(start_idx, end_idx + 1 - window_size) : end_idx + 1
|
1105 |
+
].tolist()
|
1106 |
+
else:
|
1107 |
+
output_tokens = prev_output_tokens[i][start_idx : end_idx + 1].tolist()
|
1108 |
+
else:
|
1109 |
+
output_tokens = []
|
1110 |
+
for previous_token in set(output_tokens):
|
1111 |
+
# if score < 0 then repetition penalty has to
|
1112 |
+
# multiplied to reduce the previous token probability
|
1113 |
+
if logits[i, previous_token] < 0:
|
1114 |
+
logits[i, previous_token] *= repetition_penalty
|
1115 |
+
else:
|
1116 |
+
logits[i, previous_token] /= repetition_penalty
|
1117 |
+
|
1118 |
+
|
1119 |
+
@add_start_docstrings(
|
1120 |
+
"""
|
1121 |
+
The CPMBee Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
|
1122 |
+
""",
|
1123 |
+
CPMBEE_START_DOCSTRING,
|
1124 |
+
)
|
1125 |
+
class CpmBeeForCausalLM(CpmBeePreTrainedModel):
|
1126 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
1127 |
+
|
1128 |
+
def __init__(self, config: CpmBeeConfig):
|
1129 |
+
super().__init__(config)
|
1130 |
+
self.cpmbee = CpmBeeModel(config)
|
1131 |
+
|
1132 |
+
# lm_head.weight is tied to cpmbee.input_embedding.weight
|
1133 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1134 |
+
self.post_init()
|
1135 |
+
|
1136 |
+
@add_start_docstrings_to_model_forward(CPMBEE_INPUTS_DOCSTRING)
|
1137 |
+
@add_code_sample_docstrings(
|
1138 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1139 |
+
output_type=CausalLMOutputWithPast,
|
1140 |
+
config_class=_CONFIG_FOR_DOC,
|
1141 |
+
)
|
1142 |
+
def forward(
|
1143 |
+
self,
|
1144 |
+
input_ids: Optional[torch.Tensor] = None,
|
1145 |
+
input_id_sub: Optional[torch.Tensor] = None,
|
1146 |
+
position: Optional[torch.Tensor] = None,
|
1147 |
+
context: Optional[torch.Tensor] = None,
|
1148 |
+
sample_ids: Optional[torch.Tensor] = None,
|
1149 |
+
num_segments: Optional[torch.Tensor] = None,
|
1150 |
+
segment: Optional[torch.Tensor] = None,
|
1151 |
+
segment_rel_offset: Optional[torch.Tensor] = None,
|
1152 |
+
segment_rel: Optional[torch.Tensor] = None,
|
1153 |
+
past_states: Optional[Dict] = None,
|
1154 |
+
output_attentions: Optional[bool] = None,
|
1155 |
+
output_hidden_states: Optional[bool] = None,
|
1156 |
+
past_key_values: Optional[List] = None,
|
1157 |
+
use_cache: Optional[bool] = None,
|
1158 |
+
labels: Optional[torch.Tensor] = None,
|
1159 |
+
return_dict: Optional[bool] = None,
|
1160 |
+
ext_table_ids: Optional[torch.Tensor] = None, # (ext_table_size) int32
|
1161 |
+
ext_table_sub: Optional[torch.Tensor] = None, # (ext_table_size) int32
|
1162 |
+
**kwargs,
|
1163 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1164 |
+
r"""
|
1165 |
+
Args:
|
1166 |
+
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1167 |
+
Indices of input sequence tokens in the vocabulary.
|
1168 |
+
|
1169 |
+
Indices can be obtained using [`CPMBeeTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1170 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1171 |
+
|
1172 |
+
[What are input IDs?](../glossary#input-ids)
|
1173 |
+
input_id_sub (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1174 |
+
Subscription of input sequence tokens in the vocabulary.
|
1175 |
+
|
1176 |
+
Subscription of normal text will be zero while the special tokens of each group will be the 0, 1, 2,
|
1177 |
+
... <ans_0>, <ans_1>, <ans_2> ... belongs to group <ans>. <mask_0>, <mask_1>, <mask_2> ... belongs to
|
1178 |
+
group <mask>.
|
1179 |
+
position (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1180 |
+
The position of input sequence tokens in the vocabulary for each segment. if segment1 is 0, 1, 2 and
|
1181 |
+
segment2 is 0, 1, 2, 3, the position will be 0, 1, 2, 0, 1, 2, 3
|
1182 |
+
context (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1183 |
+
Whether this token id is context or not. If is context, the value is 1. If not, the value is 0. If a
|
1184 |
+
token id is context, it does not need to be predicted.
|
1185 |
+
sample_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1186 |
+
Give a sample id to every token id. The token ids with same sample ids belongs to the same sample.
|
1187 |
+
num_segments (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1188 |
+
Total number of segments in the current input.
|
1189 |
+
segment (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1190 |
+
Give a segment id to every token id. The token ids with same segment ids belongs to the same sample.
|
1191 |
+
|
1192 |
+
Generally, a string key or value in input data will be a segment. For example, input {"input": "hello,
|
1193 |
+
", "<ans>": ""}, the segments includes: "input", "hello, ", "<ans>" and "".
|
1194 |
+
segment_rel_offset (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1195 |
+
The offset of segment rel.
|
1196 |
+
segment_rel (`torch.Tensor` of shape `(batch_size, seq_len)`):
|
1197 |
+
The segment relevance. A relative implementation of measuring the importance of segments.
|
1198 |
+
past_states (`Dict[str, Union[torch.Tensor, List]]`):
|
1199 |
+
Store the history information including position, context, sample_ids, num_segments, segment and
|
1200 |
+
past_key_values.
|
1201 |
+
output_attentions (`bool`, *optional*):
|
1202 |
+
Whether or not to return the attentions tensors of all attention layers.
|
1203 |
+
output_hidden_states (`bool`, *optional*):
|
1204 |
+
Whether or not to return the hidden states of all layers.
|
1205 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1206 |
+
A dummy arguments for CPMBee. The `past_states` contains pre-computed hidden-states (key and values in
|
1207 |
+
the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values`
|
1208 |
+
input) and other history arguments to speed up sequential decoding.
|
1209 |
+
use_cache (`bool`, *optional*):
|
1210 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1211 |
+
(see `past_key_values`).
|
1212 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1213 |
+
Labels for computing the masked language modeling loss.
|
1214 |
+
return_dict (`bool`, *optional*):
|
1215 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1216 |
+
ext_table_ids (`torch.Tensor`, *optional*):
|
1217 |
+
ext_table ids for embedding projection.
|
1218 |
+
ext_table_sub (`torch.Tensor`, *optional*):
|
1219 |
+
ext_table subscriptions for embedding projection.
|
1220 |
+
|
1221 |
+
Example:
|
1222 |
+
|
1223 |
+
Text Generation with CpmBeeForCausalLM.
|
1224 |
+
```python
|
1225 |
+
>>> from transformers import CpmBeeTokenizer, CpmBeeForCausalLM
|
1226 |
+
|
1227 |
+
>>> texts = {"input": "今天天气不错,", "<ans>": ""}
|
1228 |
+
>>> model = CpmBeeForCausalLM.from_pretrained("openbmb/cpm-bee-10b")
|
1229 |
+
>>> tokenizer = CPMBeeTokenizer.from_pretrained("openbmb/cpm-bee-10b")
|
1230 |
+
>>> output_texts = model.generate({"input": "今天天气不错,", "<ans>": ""}, tokenizer)
|
1231 |
+
>>> print(output_texts)
|
1232 |
+
{'input': '今天天气不错,', '<ans>': '适合睡觉。'}
|
1233 |
+
```
|
1234 |
+
"""
|
1235 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1236 |
+
|
1237 |
+
model_output = self.cpmbee(
|
1238 |
+
input_ids,
|
1239 |
+
input_id_sub,
|
1240 |
+
position,
|
1241 |
+
context,
|
1242 |
+
sample_ids,
|
1243 |
+
num_segments,
|
1244 |
+
segment,
|
1245 |
+
segment_rel_offset,
|
1246 |
+
segment_rel,
|
1247 |
+
past_states,
|
1248 |
+
output_attentions,
|
1249 |
+
output_hidden_states,
|
1250 |
+
past_key_values,
|
1251 |
+
use_cache,
|
1252 |
+
return_dict,
|
1253 |
+
)
|
1254 |
+
hidden_states = model_output.last_hidden_state if return_dict else model_output[0]
|
1255 |
+
|
1256 |
+
if ext_table_ids is not None:
|
1257 |
+
ext_table = self.cpmbee.input_embedding(ext_table_ids, ext_table_sub)
|
1258 |
+
else:
|
1259 |
+
ext_table = None
|
1260 |
+
logits = self.cpmbee.input_embedding.projection(hidden_states, ext_table)
|
1261 |
+
|
1262 |
+
loss = None
|
1263 |
+
if labels is not None:
|
1264 |
+
loss_func = nn.CrossEntropyLoss()
|
1265 |
+
loss = loss_func(logits.view(-1, logits.size(-1)), labels.view(-1))
|
1266 |
+
|
1267 |
+
if not return_dict:
|
1268 |
+
output = (logits,) + model_output[1:]
|
1269 |
+
return ((loss,) + output) if loss is not None else output
|
1270 |
+
|
1271 |
+
return CausalLMOutputWithPast(
|
1272 |
+
loss=loss,
|
1273 |
+
logits=logits,
|
1274 |
+
past_key_values=model_output.past_key_values,
|
1275 |
+
hidden_states=model_output.hidden_states,
|
1276 |
+
attentions=model_output.attentions,
|
1277 |
+
)
|
1278 |
+
|
1279 |
+
def get_input_embeddings(self):
|
1280 |
+
return self.cpmbee.input_embedding
|
1281 |
+
|
1282 |
+
def set_input_embeddings(self, embeddings):
|
1283 |
+
self.cpmbee.input_embedding = embeddings
|
1284 |
+
|
1285 |
+
def get_output_embeddings(self):
|
1286 |
+
return self.lm_head
|
1287 |
+
|
1288 |
+
def set_output_embeddings(self, new_embeddings):
|
1289 |
+
self.lm_head = new_embeddings
|
1290 |
+
|
1291 |
+
def prepare_inputs_for_generation(
|
1292 |
+
self,
|
1293 |
+
input_ids: torch.Tensor,
|
1294 |
+
batch_size: int,
|
1295 |
+
beam_scorer: CpmBeeBeamSearchScorer = None,
|
1296 |
+
input_id_subs: Optional[torch.Tensor] = None,
|
1297 |
+
input_pos: Optional[torch.Tensor] = None,
|
1298 |
+
segment_ids: Optional[torch.Tensor] = None,
|
1299 |
+
batch_ext_table_ids: Optional[torch.Tensor] = None,
|
1300 |
+
batch_ext_table_sub: Optional[torch.Tensor] = None,
|
1301 |
+
other_info: Optional[Dict] = None,
|
1302 |
+
**model_kwargs,
|
1303 |
+
):
|
1304 |
+
"""
|
1305 |
+
Choose the current input according to beam states.
|
1306 |
+
"""
|
1307 |
+
# init preparation
|
1308 |
+
context = model_kwargs.get("context")
|
1309 |
+
sample_ids = model_kwargs.get("sample_ids")
|
1310 |
+
segment_rel_offset = model_kwargs.get("segment_rel_offset")
|
1311 |
+
num_segments = model_kwargs.get("num_segments")
|
1312 |
+
segment_rel = model_kwargs.get("segment_rel")
|
1313 |
+
past_states = model_kwargs.get("past_states", None)
|
1314 |
+
past_key_values = model_kwargs.get("past_key_values", None)
|
1315 |
+
_input_ids = input_ids
|
1316 |
+
|
1317 |
+
# update input in generation
|
1318 |
+
if beam_scorer is not None:
|
1319 |
+
tmp_input = []
|
1320 |
+
tmp_input_sub = []
|
1321 |
+
tmp_position = []
|
1322 |
+
tmp_segment = []
|
1323 |
+
for sent_id in range(batch_size):
|
1324 |
+
for beam_id in range(beam_scorer.num_beams):
|
1325 |
+
tmp_input.append(beam_scorer.beam_states[sent_id][beam_id]["nx_token_id"])
|
1326 |
+
tmp_input_sub.append(beam_scorer.beam_states[sent_id][beam_id]["nx_token_sub"])
|
1327 |
+
tmp_position.append(beam_scorer.beam_states[sent_id][beam_id]["nx_position"])
|
1328 |
+
tmp_segment.append(beam_scorer.beam_states[sent_id][beam_id]["nx_segment_id"])
|
1329 |
+
|
1330 |
+
model_kwargs["input_id_subs"] = input_id_subs = torch.tensor(
|
1331 |
+
tmp_input_sub, dtype=torch.int32, device=self.device
|
1332 |
+
).view(batch_size * beam_scorer.num_beams, 1)
|
1333 |
+
model_kwargs["input_pos"] = input_pos = torch.tensor(
|
1334 |
+
tmp_position, dtype=torch.int32, device=self.device
|
1335 |
+
).view(batch_size * beam_scorer.num_beams, 1)
|
1336 |
+
model_kwargs["segment_ids"] = segment_ids = torch.tensor(
|
1337 |
+
tmp_segment, dtype=torch.int32, device=self.device
|
1338 |
+
).view(batch_size * beam_scorer.num_beams, 1)
|
1339 |
+
input_ids = torch.cat(
|
1340 |
+
[
|
1341 |
+
input_ids,
|
1342 |
+
torch.tensor(tmp_input, dtype=torch.int32, device=self.device).view(
|
1343 |
+
batch_size * beam_scorer.num_beams, 1
|
1344 |
+
),
|
1345 |
+
],
|
1346 |
+
dim=-1,
|
1347 |
+
)
|
1348 |
+
_input_ids = input_ids[:, -1:]
|
1349 |
+
|
1350 |
+
return {
|
1351 |
+
"input_ids": _input_ids,
|
1352 |
+
"input_id_sub": input_id_subs,
|
1353 |
+
"position": input_pos,
|
1354 |
+
"context": context,
|
1355 |
+
"sample_ids": sample_ids,
|
1356 |
+
"segment_rel_offset": segment_rel_offset,
|
1357 |
+
"segment": segment_ids,
|
1358 |
+
"num_segments": num_segments,
|
1359 |
+
"segment_rel": segment_rel,
|
1360 |
+
"use_cache": True,
|
1361 |
+
"past_key_values": past_key_values,
|
1362 |
+
"ext_table_ids": batch_ext_table_ids,
|
1363 |
+
"ext_table_sub": batch_ext_table_sub,
|
1364 |
+
"past_states": past_states,
|
1365 |
+
}, input_ids
|
1366 |
+
|
1367 |
+
def _update_model_kwargs_for_generation(
|
1368 |
+
self,
|
1369 |
+
outputs: ModelOutput,
|
1370 |
+
model_inputs=None,
|
1371 |
+
**model_kwargs,
|
1372 |
+
) -> Dict[str, Any]:
|
1373 |
+
"""
|
1374 |
+
Concatenate the history input and current input.
|
1375 |
+
"""
|
1376 |
+
|
1377 |
+
old_past_states = model_kwargs["past_states"]
|
1378 |
+
model_kwargs["past_states"] = {
|
1379 |
+
"buffer_position": torch.cat([old_past_states["buffer_position"], model_inputs["position"]], dim=-1),
|
1380 |
+
"buffer_context": torch.cat([old_past_states["buffer_context"], model_inputs["context"]], dim=-1),
|
1381 |
+
"buffer_sample_ids": torch.cat([old_past_states["buffer_sample_ids"], model_inputs["sample_ids"]], dim=-1),
|
1382 |
+
"buffer_num_segments": torch.cat(
|
1383 |
+
[old_past_states["buffer_num_segments"], model_inputs["num_segments"]], dim=-1
|
1384 |
+
),
|
1385 |
+
"buffer_segments": torch.cat([old_past_states["buffer_segments"], model_inputs["segment"]], dim=-1),
|
1386 |
+
"buffer": outputs.past_key_values,
|
1387 |
+
}
|
1388 |
+
|
1389 |
+
return model_kwargs
|
1390 |
+
|
1391 |
+
def _reorder_cache(self, past_key_values: Dict, beam_idx: torch.Tensor):
|
1392 |
+
beam_idx = beam_idx.tolist()
|
1393 |
+
for kw in past_key_values.keys():
|
1394 |
+
if kw == "buffer":
|
1395 |
+
buf_list = past_key_values[kw]
|
1396 |
+
nw_buf_list = []
|
1397 |
+
for buf in buf_list:
|
1398 |
+
if buf == (None, None):
|
1399 |
+
nw_buf_list.append((None, None))
|
1400 |
+
else:
|
1401 |
+
k_buf, v_buf = buf
|
1402 |
+
nw_buf_list.append((k_buf[beam_idx, :], v_buf[beam_idx, :]))
|
1403 |
+
past_key_values[kw] = nw_buf_list
|
1404 |
+
else:
|
1405 |
+
past_key_values[kw] = past_key_values[kw][beam_idx, :]
|
1406 |
+
|
1407 |
+
return past_key_values
|
1408 |
+
|
1409 |
+
@staticmethod
|
1410 |
+
def _expand_inputs_for_generation(
|
1411 |
+
expand_size: int = 1,
|
1412 |
+
is_encoder_decoder: bool = False,
|
1413 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1414 |
+
**model_kwargs,
|
1415 |
+
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
|
1416 |
+
"""Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
|
1417 |
+
|
1418 |
+
# do not expand ext_table_ids and ext_table_sub
|
1419 |
+
def _expand_dict_for_generation(dict_to_expand):
|
1420 |
+
for key in dict_to_expand:
|
1421 |
+
if (
|
1422 |
+
dict_to_expand[key] is not None
|
1423 |
+
and isinstance(dict_to_expand[key], torch.Tensor)
|
1424 |
+
and "ext_table" not in key
|
1425 |
+
):
|
1426 |
+
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
|
1427 |
+
return dict_to_expand
|
1428 |
+
|
1429 |
+
if input_ids is not None:
|
1430 |
+
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
|
1431 |
+
|
1432 |
+
model_kwargs = _expand_dict_for_generation(model_kwargs)
|
1433 |
+
|
1434 |
+
if is_encoder_decoder:
|
1435 |
+
if model_kwargs.get("encoder_outputs") is None:
|
1436 |
+
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
|
1437 |
+
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
|
1438 |
+
|
1439 |
+
return input_ids, model_kwargs
|
1440 |
+
|
1441 |
+
def adjust_logits_during_generation(
|
1442 |
+
self,
|
1443 |
+
logits: torch.FloatTensor,
|
1444 |
+
batch_size: int,
|
1445 |
+
beam_size: int,
|
1446 |
+
vocab_size: int,
|
1447 |
+
ext_table_ids: torch.Tensor,
|
1448 |
+
**model_kwargs,
|
1449 |
+
) -> torch.FloatTensor:
|
1450 |
+
"""
|
1451 |
+
Implement in subclasses of [`PreTrainedModel`] for custom behavior to adjust the logits in the generate method.
|
1452 |
+
"""
|
1453 |
+
for sent_id in range(batch_size):
|
1454 |
+
if 1 not in model_kwargs["other_info"][sent_id]["ext_table"]:
|
1455 |
+
# unk is not allowed, mask unk
|
1456 |
+
logits[sent_id * beam_size : (sent_id + 1) * beam_size, 1] = -10000
|
1457 |
+
ext_ids = set()
|
1458 |
+
for v in model_kwargs["other_info"][sent_id]["ext_table"].keys():
|
1459 |
+
ext_ids.add(v)
|
1460 |
+
for ext_id in range(vocab_size, vocab_size + ext_table_ids.size(0)):
|
1461 |
+
if ext_id not in ext_ids:
|
1462 |
+
logits[sent_id * beam_size : (sent_id + 1) * beam_size, ext_id] = -10000
|
1463 |
+
return logits
|
1464 |
+
|
1465 |
+
def beam_search(
|
1466 |
+
self,
|
1467 |
+
input_ids: torch.LongTensor,
|
1468 |
+
beam_scorer: CpmBeeBeamSearchScorer,
|
1469 |
+
repetition_penalty: Optional[float] = 1.0,
|
1470 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
1471 |
+
max_length: Optional[int] = None,
|
1472 |
+
pad_token_id: Optional[int] = None,
|
1473 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
1474 |
+
bos_token_id: Optional[Union[int, List[int]]] = None,
|
1475 |
+
output_attentions: Optional[bool] = None,
|
1476 |
+
output_hidden_states: Optional[bool] = None,
|
1477 |
+
output_scores: Optional[bool] = None,
|
1478 |
+
return_dict_in_generate: Optional[bool] = None,
|
1479 |
+
synced_gpus: bool = False,
|
1480 |
+
**model_kwargs,
|
1481 |
+
) -> List:
|
1482 |
+
"""
|
1483 |
+
Override the beam_search for CPMBee.
|
1484 |
+
"""
|
1485 |
+
# init values
|
1486 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1487 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
1488 |
+
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
|
1489 |
+
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
|
1490 |
+
max_length = max_length if max_length is not None else self.generation_config.max_length
|
1491 |
+
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
|
1492 |
+
output_attentions = (
|
1493 |
+
output_attentions if output_attentions is not None else self.generation_config.output_attentions
|
1494 |
+
)
|
1495 |
+
output_hidden_states = (
|
1496 |
+
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
|
1497 |
+
)
|
1498 |
+
return_dict_in_generate = (
|
1499 |
+
return_dict_in_generate
|
1500 |
+
if return_dict_in_generate is not None
|
1501 |
+
else self.generation_config.return_dict_in_generate
|
1502 |
+
)
|
1503 |
+
|
1504 |
+
batch_size = len(beam_scorer._beam_hyps)
|
1505 |
+
num_beams = beam_scorer.num_beams
|
1506 |
+
|
1507 |
+
batch_beam_size, cur_len = input_ids.shape
|
1508 |
+
|
1509 |
+
if num_beams * batch_size != batch_beam_size:
|
1510 |
+
raise ValueError(
|
1511 |
+
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
|
1512 |
+
)
|
1513 |
+
|
1514 |
+
# init attention / hidden states / scores tuples
|
1515 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
1516 |
+
beam_indices = (
|
1517 |
+
tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
|
1518 |
+
)
|
1519 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
1520 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
1521 |
+
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
1522 |
+
|
1523 |
+
# initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
|
1524 |
+
# of the first beam are considered to avoid sampling the exact same tokens across all beams.
|
1525 |
+
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=self.device)
|
1526 |
+
beam_scores[:, 1:] = -1e9
|
1527 |
+
beam_scores = beam_scores.view((batch_size * num_beams,))
|
1528 |
+
|
1529 |
+
this_peer_finished = False # used by synced_gpus only
|
1530 |
+
|
1531 |
+
# init inference
|
1532 |
+
model_inputs, input_ids = self.prepare_inputs_for_generation(input_ids, batch_size, **model_kwargs)
|
1533 |
+
pred_start_index = input_ids.size(-1)
|
1534 |
+
outputs = self(
|
1535 |
+
**model_inputs,
|
1536 |
+
return_dict=True,
|
1537 |
+
output_attentions=output_attentions,
|
1538 |
+
output_hidden_states=output_hidden_states,
|
1539 |
+
)
|
1540 |
+
|
1541 |
+
# update model_kwargs
|
1542 |
+
model_kwargs["past_states"] = {
|
1543 |
+
"buffer_position": model_inputs["position"],
|
1544 |
+
"buffer_context": model_inputs["context"],
|
1545 |
+
"buffer_sample_ids": model_inputs["sample_ids"],
|
1546 |
+
"buffer_num_segments": model_inputs["num_segments"],
|
1547 |
+
"buffer_segments": model_inputs["segment"],
|
1548 |
+
"buffer": outputs.past_key_values,
|
1549 |
+
}
|
1550 |
+
model_kwargs["context"] = torch.ones(batch_beam_size, dtype=torch.bool, device=self.device).view(
|
1551 |
+
batch_beam_size, 1
|
1552 |
+
)
|
1553 |
+
model_kwargs["sample_ids"] = torch.zeros(batch_beam_size, dtype=torch.int32, device=self.device).view(
|
1554 |
+
batch_beam_size, 1
|
1555 |
+
)
|
1556 |
+
model_kwargs["num_segments"] = model_kwargs["num_segments"][:, -1:]
|
1557 |
+
model_kwargs["segment_rel_offset"] = model_kwargs["segment_rel_offset"][:, -1:]
|
1558 |
+
model_kwargs["past_key_values"] = outputs.past_key_values
|
1559 |
+
|
1560 |
+
ext_table_ids_cpu = model_inputs["ext_table_ids"].cpu()
|
1561 |
+
ext_table_sub_cpu = model_inputs["ext_table_sub"].cpu()
|
1562 |
+
|
1563 |
+
cur_len = 0
|
1564 |
+
while True:
|
1565 |
+
if synced_gpus:
|
1566 |
+
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
1567 |
+
# The following logic allows an early break if all peers finished generating their sequence
|
1568 |
+
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
|
1569 |
+
# send 0.0 if we finished, 1.0 otherwise
|
1570 |
+
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
1571 |
+
# did all peers finish? the reduced sum will be 0.0 then
|
1572 |
+
if this_peer_finished_flag.item() == 0.0:
|
1573 |
+
break
|
1574 |
+
|
1575 |
+
model_inputs, input_ids = self.prepare_inputs_for_generation(
|
1576 |
+
input_ids, batch_size, beam_scorer, **model_kwargs
|
1577 |
+
)
|
1578 |
+
|
1579 |
+
outputs = self(
|
1580 |
+
**model_inputs,
|
1581 |
+
return_dict=True,
|
1582 |
+
output_attentions=output_attentions,
|
1583 |
+
output_hidden_states=output_hidden_states,
|
1584 |
+
)
|
1585 |
+
|
1586 |
+
next_token_logits = outputs.logits[:, -1, :]
|
1587 |
+
|
1588 |
+
if all(beam_scorer._done):
|
1589 |
+
break
|
1590 |
+
# hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
|
1591 |
+
# cannot be generated both before and after the `nn.functional.log_softmax` operation.
|
1592 |
+
vocab_size = next_token_logits.shape[-1]
|
1593 |
+
next_token_logits = self.adjust_logits_during_generation(
|
1594 |
+
next_token_logits, batch_size, num_beams, vocab_size, ext_table_ids_cpu, **model_kwargs
|
1595 |
+
)
|
1596 |
+
|
1597 |
+
# repetition_penalty
|
1598 |
+
beam_scorer.apply_repetition_penalty(
|
1599 |
+
next_token_logits,
|
1600 |
+
batch_size,
|
1601 |
+
num_beams,
|
1602 |
+
model_inputs["input_ids"],
|
1603 |
+
repetition_penalty,
|
1604 |
+
pred_start_index,
|
1605 |
+
model_inputs["input_ids"].size(-1) - 1,
|
1606 |
+
None,
|
1607 |
+
)
|
1608 |
+
|
1609 |
+
_next_token_scores = nn.functional.log_softmax(
|
1610 |
+
next_token_logits, dim=-1
|
1611 |
+
) # (batch_size * num_beams, vocab_size)
|
1612 |
+
|
1613 |
+
next_token_scores_processed = logits_processor(input_ids, _next_token_scores)
|
1614 |
+
# next_token_scores_processed = _next_token_scores
|
1615 |
+
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(_next_token_scores)
|
1616 |
+
|
1617 |
+
# Store scores, attentions and hidden_states when required
|
1618 |
+
if return_dict_in_generate:
|
1619 |
+
if output_scores:
|
1620 |
+
scores += (next_token_scores_processed,)
|
1621 |
+
if output_attentions:
|
1622 |
+
decoder_attentions += (
|
1623 |
+
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
|
1624 |
+
)
|
1625 |
+
if self.config.is_encoder_decoder:
|
1626 |
+
cross_attentions += (outputs.cross_attentions,)
|
1627 |
+
|
1628 |
+
if output_hidden_states:
|
1629 |
+
decoder_hidden_states += (
|
1630 |
+
(outputs.decoder_hidden_states,)
|
1631 |
+
if self.config.is_encoder_decoder
|
1632 |
+
else (outputs.hidden_states,)
|
1633 |
+
)
|
1634 |
+
|
1635 |
+
# reshape for beam search
|
1636 |
+
vocab_size = next_token_scores.shape[-1]
|
1637 |
+
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
|
1638 |
+
|
1639 |
+
# Sample 2 next tokens for each beam (so we have some spare tokens and match output of beam search)
|
1640 |
+
next_token_scores, next_tokens = torch.topk(
|
1641 |
+
next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True
|
1642 |
+
)
|
1643 |
+
|
1644 |
+
beam_outputs = beam_scorer.process(
|
1645 |
+
batch_size,
|
1646 |
+
cur_len,
|
1647 |
+
_next_token_scores,
|
1648 |
+
next_token_scores,
|
1649 |
+
next_tokens,
|
1650 |
+
vocab_size=vocab_size,
|
1651 |
+
pad_token_id=pad_token_id,
|
1652 |
+
bos_token_id=bos_token_id,
|
1653 |
+
eos_token_id=eos_token_id,
|
1654 |
+
max_length=max_length,
|
1655 |
+
ext_table_ids_cpu=ext_table_ids_cpu,
|
1656 |
+
ext_table_sub_cpu=ext_table_sub_cpu,
|
1657 |
+
**model_kwargs,
|
1658 |
+
)
|
1659 |
+
if beam_outputs is None:
|
1660 |
+
break
|
1661 |
+
beam_idx = beam_outputs["next_beam_indices"]
|
1662 |
+
beam_scores = beam_outputs["next_beam_scores"]
|
1663 |
+
|
1664 |
+
input_ids = input_ids[beam_idx.tolist(), :]
|
1665 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_inputs, **model_kwargs)
|
1666 |
+
if model_kwargs["past_states"] is not None:
|
1667 |
+
model_kwargs["past_states"] = self._reorder_cache(model_kwargs["past_states"], beam_idx)
|
1668 |
+
|
1669 |
+
if return_dict_in_generate and output_scores:
|
1670 |
+
beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))
|
1671 |
+
|
1672 |
+
cur_len += 1
|
1673 |
+
|
1674 |
+
if beam_scorer.is_done or cur_len == max_length + 1:
|
1675 |
+
if not synced_gpus:
|
1676 |
+
break
|
1677 |
+
else:
|
1678 |
+
this_peer_finished = True
|
1679 |
+
|
1680 |
+
sequence_outputs = beam_scorer.finalize()
|
1681 |
+
|
1682 |
+
return sequence_outputs
|
1683 |
+
|
1684 |
+
def _generate(
|
1685 |
+
self,
|
1686 |
+
inputs: Optional[torch.Tensor] = None,
|
1687 |
+
generation_config: Optional[GenerationConfig] = None,
|
1688 |
+
repetition_penalty: Optional[float] = 1.0,
|
1689 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
1690 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1691 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1692 |
+
synced_gpus: Optional[bool] = None,
|
1693 |
+
streamer: Optional["BaseStreamer"] = None,
|
1694 |
+
**kwargs,
|
1695 |
+
) -> List:
|
1696 |
+
r"""
|
1697 |
+
The generation of CPMBee.
|
1698 |
+
1. It will use beam search as generation strategy.
|
1699 |
+
2. It will use CpmBeeBeamSearchScorer as the beamsearch scorer.
|
1700 |
+
"""
|
1701 |
+
if synced_gpus is None:
|
1702 |
+
if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1:
|
1703 |
+
synced_gpus = True
|
1704 |
+
else:
|
1705 |
+
synced_gpus = False
|
1706 |
+
|
1707 |
+
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
|
1708 |
+
self._validate_model_class()
|
1709 |
+
|
1710 |
+
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
|
1711 |
+
if generation_config is None:
|
1712 |
+
# legacy: users may modify the model configuration to control generation -- update the generation config
|
1713 |
+
# model attribute accordingly, if it was created from the model config
|
1714 |
+
if self.generation_config._from_model_config:
|
1715 |
+
new_generation_config = GenerationConfig.from_model_config(self.config)
|
1716 |
+
if new_generation_config != self.generation_config:
|
1717 |
+
warnings.warn(
|
1718 |
+
"You have modified the pretrained model configuration to control generation. This is a"
|
1719 |
+
" deprecated strategy to control generation and will be removed soon, in a future version."
|
1720 |
+
" Please use a generation configuration file (see"
|
1721 |
+
" https://huggingface.co/docs/transformers/main_classes/text_generation)"
|
1722 |
+
)
|
1723 |
+
self.generation_config = new_generation_config
|
1724 |
+
generation_config = self.generation_config
|
1725 |
+
|
1726 |
+
generation_config = copy.deepcopy(generation_config)
|
1727 |
+
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
|
1728 |
+
generation_config.validate()
|
1729 |
+
self._validate_model_kwargs(model_kwargs.copy())
|
1730 |
+
|
1731 |
+
# 2. Set generation parameters if not already defined
|
1732 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1733 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
1734 |
+
|
1735 |
+
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
|
1736 |
+
if model_kwargs.get("attention_mask", None) is None:
|
1737 |
+
logger.warning(
|
1738 |
+
"The attention mask and the pad token id were not set. As a consequence, you may observe "
|
1739 |
+
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
|
1740 |
+
)
|
1741 |
+
eos_token_id = generation_config.eos_token_id
|
1742 |
+
if isinstance(eos_token_id, list):
|
1743 |
+
eos_token_id = eos_token_id[0]
|
1744 |
+
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
|
1745 |
+
generation_config.pad_token_id = eos_token_id
|
1746 |
+
|
1747 |
+
# 3. Define model inputs
|
1748 |
+
# inputs_tensor has to be defined
|
1749 |
+
# model_input_name is defined if model-specific keyword input is passed
|
1750 |
+
# otherwise model_input_name is None
|
1751 |
+
# all model-specific keyword inputs are removed from `model_kwargs`
|
1752 |
+
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
|
1753 |
+
inputs, generation_config.bos_token_id, model_kwargs
|
1754 |
+
)
|
1755 |
+
batch_size = inputs_tensor.shape[0]
|
1756 |
+
|
1757 |
+
# 4. Define other model kwargs
|
1758 |
+
model_kwargs["output_attentions"] = generation_config.output_attentions
|
1759 |
+
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
|
1760 |
+
model_kwargs["use_cache"] = generation_config.use_cache
|
1761 |
+
|
1762 |
+
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
|
1763 |
+
requires_attention_mask = "encoder_outputs" not in model_kwargs
|
1764 |
+
|
1765 |
+
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
|
1766 |
+
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
|
1767 |
+
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
|
1768 |
+
)
|
1769 |
+
|
1770 |
+
# decoder-only models should use left-padding for generation
|
1771 |
+
if not self.config.is_encoder_decoder:
|
1772 |
+
# If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
|
1773 |
+
# Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
|
1774 |
+
if (
|
1775 |
+
generation_config.pad_token_id is not None
|
1776 |
+
and len(inputs_tensor.shape) == 2
|
1777 |
+
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0
|
1778 |
+
):
|
1779 |
+
logger.warning(
|
1780 |
+
"A decoder-only architecture is being used, but right-padding was detected! For correct "
|
1781 |
+
"generation results, please set `padding_side='left'` when initializing the tokenizer."
|
1782 |
+
)
|
1783 |
+
|
1784 |
+
# 5. Prepare `input_ids` which will be used for auto-regressive generation
|
1785 |
+
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
|
1786 |
+
|
1787 |
+
if streamer is not None:
|
1788 |
+
streamer.put(input_ids.cpu())
|
1789 |
+
|
1790 |
+
# 6. Prepare `max_length` depending on other stopping criteria.
|
1791 |
+
input_ids_seq_length = input_ids.shape[-1]
|
1792 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
1793 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
1794 |
+
warnings.warn(
|
1795 |
+
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
1796 |
+
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
1797 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
1798 |
+
UserWarning,
|
1799 |
+
)
|
1800 |
+
elif generation_config.max_new_tokens is not None:
|
1801 |
+
if not has_default_max_length:
|
1802 |
+
logger.warning(
|
1803 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
1804 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
1805 |
+
"Please refer to the documentation for more information. "
|
1806 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
|
1807 |
+
)
|
1808 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
1809 |
+
|
1810 |
+
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
|
1811 |
+
raise ValueError(
|
1812 |
+
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than"
|
1813 |
+
f" the maximum length ({generation_config.max_length})"
|
1814 |
+
)
|
1815 |
+
if input_ids_seq_length >= generation_config.max_length:
|
1816 |
+
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
1817 |
+
logger.warning(
|
1818 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
1819 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
1820 |
+
" increasing `max_new_tokens`."
|
1821 |
+
)
|
1822 |
+
|
1823 |
+
if streamer is not None and (generation_config.num_beams > 1):
|
1824 |
+
raise ValueError(
|
1825 |
+
"`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
|
1826 |
+
)
|
1827 |
+
|
1828 |
+
if self.device.type != input_ids.device.type:
|
1829 |
+
warnings.warn(
|
1830 |
+
"You are calling .generate() with the `input_ids` being on a device type different"
|
1831 |
+
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
|
1832 |
+
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
|
1833 |
+
" Please make sure that you have put `input_ids` to the"
|
1834 |
+
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
|
1835 |
+
" running `.generate()`.",
|
1836 |
+
UserWarning,
|
1837 |
+
)
|
1838 |
+
|
1839 |
+
# 7. prepare distribution pre_processing samplers
|
1840 |
+
logits_processor = self._get_logits_processor(
|
1841 |
+
generation_config=generation_config,
|
1842 |
+
input_ids_seq_length=input_ids_seq_length,
|
1843 |
+
encoder_input_ids=inputs_tensor,
|
1844 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1845 |
+
logits_processor=logits_processor,
|
1846 |
+
)
|
1847 |
+
|
1848 |
+
# 8. prepare beam search scorer
|
1849 |
+
beam_scorer = CpmBeeBeamSearchScorer(
|
1850 |
+
batch_size=batch_size,
|
1851 |
+
num_beams=generation_config.num_beams,
|
1852 |
+
device=inputs_tensor.device,
|
1853 |
+
length_penalty=generation_config.length_penalty,
|
1854 |
+
do_early_stopping=generation_config.early_stopping,
|
1855 |
+
num_beam_hyps_to_keep=generation_config.num_return_sequences,
|
1856 |
+
max_length=generation_config.max_length,
|
1857 |
+
**kwargs,
|
1858 |
+
)
|
1859 |
+
# 9. interleave input_ids with `num_beams` additional sequences per batch
|
1860 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
1861 |
+
input_ids=input_ids,
|
1862 |
+
expand_size=generation_config.num_beams,
|
1863 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
1864 |
+
**model_kwargs,
|
1865 |
+
)
|
1866 |
+
# 10. run beam search
|
1867 |
+
return self.beam_search(
|
1868 |
+
input_ids,
|
1869 |
+
beam_scorer,
|
1870 |
+
repetition_penalty=repetition_penalty,
|
1871 |
+
logits_processor=logits_processor,
|
1872 |
+
pad_token_id=generation_config.pad_token_id,
|
1873 |
+
eos_token_id=generation_config.eos_token_id,
|
1874 |
+
output_scores=generation_config.output_scores,
|
1875 |
+
return_dict_in_generate=generation_config.return_dict_in_generate,
|
1876 |
+
synced_gpus=synced_gpus,
|
1877 |
+
**model_kwargs,
|
1878 |
+
)
|
1879 |
+
|
1880 |
+
@torch.no_grad()
|
1881 |
+
def generate(
|
1882 |
+
self,
|
1883 |
+
data_list: Union[Dict, List[Dict]],
|
1884 |
+
tokenizer: CpmBeeTokenizer,
|
1885 |
+
generation_config=None,
|
1886 |
+
**kwargs,
|
1887 |
+
):
|
1888 |
+
"""
|
1889 |
+
Override the generate for CPMBee. It will accept dict or list(dict) as input and returns dict or list(dict)
|
1890 |
+
with `<ans>` filled.
|
1891 |
+
|
1892 |
+
Parameters:
|
1893 |
+
data_list (`dict` or `list(dict)`):
|
1894 |
+
The sequence used as a prompt for the generation or as model inputs to the encoder. If dict, data_list
|
1895 |
+
will be wrapped as a list.
|
1896 |
+
tokenizer: (`CpmBeeTokenizer`):
|
1897 |
+
The tokenizer.
|
1898 |
+
generation_config (`~generation.GenerationConfig`, *optional*):
|
1899 |
+
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
|
1900 |
+
passed to generate matching the attributes of `generation_config` will override them. If
|
1901 |
+
`generation_config` is not provided, the default will be used, which had the following loading
|
1902 |
+
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
|
1903 |
+
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
|
1904 |
+
default values, whose documentation should be checked to parameterize generation.
|
1905 |
+
"""
|
1906 |
+
if isinstance(data_list, dict):
|
1907 |
+
data_list = [data_list]
|
1908 |
+
input_encoded = tokenizer(data_list, return_tensors="pt", padding=True, device=self.device)
|
1909 |
+
input_encoded.update(kwargs)
|
1910 |
+
input_encoded["generation_config"] = generation_config
|
1911 |
+
|
1912 |
+
decode_res = self._generate(**input_encoded)
|
1913 |
+
|
1914 |
+
for sent_id, result in enumerate(decode_res):
|
1915 |
+
ans_result_map: Dict[int, List[int]] = {}
|
1916 |
+
for raw_word_id, ans_id in result:
|
1917 |
+
if ans_id not in ans_result_map:
|
1918 |
+
ans_result_map[ans_id] = []
|
1919 |
+
ans_result_map[ans_id].append(raw_word_id)
|
1920 |
+
|
1921 |
+
answer_placeholders = input_encoded["other_info"][sent_id]["answer_placeholders"]
|
1922 |
+
ext_table = input_encoded["other_info"][sent_id]["ext_table"]
|
1923 |
+
data = data_list[sent_id]
|
1924 |
+
for ans_id, token_ids in ans_result_map.items():
|
1925 |
+
if token_ids[-1] == tokenizer.eos_token_id:
|
1926 |
+
token_ids = token_ids[:-1]
|
1927 |
+
text = tokenizer.decode(token_ids, ext_table)
|
1928 |
+
path = answer_placeholders[ans_id - 1]
|
1929 |
+
|
1930 |
+
if len(path) > 0:
|
1931 |
+
p = data["<ans>"]
|
1932 |
+
for part in path[:-1]:
|
1933 |
+
p = p[part]
|
1934 |
+
p[path[-1]] = text
|
1935 |
+
else:
|
1936 |
+
data["<ans>"] = text
|
1937 |
+
for ans_id in range(len(answer_placeholders)):
|
1938 |
+
if (ans_id + 1) not in ans_result_map:
|
1939 |
+
path = answer_placeholders[ans_id]
|
1940 |
+
p = data["<ans>"]
|
1941 |
+
for part in path[:-1]:
|
1942 |
+
p = p[part]
|
1943 |
+
p[path[-1]] = None
|
1944 |
+
return data_list
|
test_modeling_cpmbee.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Testing suite for the PyTorch CpmBee model. """
|
16 |
+
|
17 |
+
|
18 |
+
import unittest
|
19 |
+
|
20 |
+
from transformers.testing_utils import is_torch_available, require_torch, tooslow
|
21 |
+
|
22 |
+
from ...generation.test_utils import torch_device
|
23 |
+
from ...test_configuration_common import ConfigTester
|
24 |
+
from ...test_modeling_common import ModelTesterMixin, ids_tensor
|
25 |
+
from ...test_pipeline_mixin import PipelineTesterMixin
|
26 |
+
|
27 |
+
|
28 |
+
if is_torch_available():
|
29 |
+
import torch
|
30 |
+
|
31 |
+
from transformers import (
|
32 |
+
CpmBeeConfig,
|
33 |
+
CpmBeeForCausalLM,
|
34 |
+
CpmBeeModel,
|
35 |
+
CpmBeeTokenizer,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
@require_torch
|
40 |
+
class CpmBeeModelTester:
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
parent,
|
44 |
+
batch_size=2,
|
45 |
+
seq_length=8,
|
46 |
+
is_training=True,
|
47 |
+
use_token_type_ids=False,
|
48 |
+
use_input_mask=False,
|
49 |
+
use_labels=False,
|
50 |
+
use_mc_token_ids=False,
|
51 |
+
vocab_size=99,
|
52 |
+
hidden_size=32,
|
53 |
+
num_hidden_layers=3,
|
54 |
+
num_attention_heads=4,
|
55 |
+
intermediate_size=37,
|
56 |
+
num_buckets=32,
|
57 |
+
max_distance=128,
|
58 |
+
position_bias_num_segment_buckets=32,
|
59 |
+
init_std=1.0,
|
60 |
+
return_dict=True,
|
61 |
+
):
|
62 |
+
self.parent = parent
|
63 |
+
self.batch_size = batch_size
|
64 |
+
self.seq_length = seq_length
|
65 |
+
self.is_training = is_training
|
66 |
+
self.use_token_type_ids = use_token_type_ids
|
67 |
+
self.use_input_mask = use_input_mask
|
68 |
+
self.use_labels = use_labels
|
69 |
+
self.use_mc_token_ids = use_mc_token_ids
|
70 |
+
self.vocab_size = vocab_size
|
71 |
+
self.hidden_size = hidden_size
|
72 |
+
self.num_hidden_layers = num_hidden_layers
|
73 |
+
self.num_attention_heads = num_attention_heads
|
74 |
+
self.intermediate_size = intermediate_size
|
75 |
+
self.num_buckets = num_buckets
|
76 |
+
self.max_distance = max_distance
|
77 |
+
self.position_bias_num_segment_buckets = position_bias_num_segment_buckets
|
78 |
+
self.init_std = init_std
|
79 |
+
self.return_dict = return_dict
|
80 |
+
|
81 |
+
def prepare_config_and_inputs(self):
|
82 |
+
input_ids = {}
|
83 |
+
input_ids["input_ids"] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).type(torch.int32)
|
84 |
+
input_ids["use_cache"] = False
|
85 |
+
|
86 |
+
config = self.get_config()
|
87 |
+
|
88 |
+
return (config, input_ids)
|
89 |
+
|
90 |
+
def get_config(self):
|
91 |
+
return CpmBeeConfig(
|
92 |
+
vocab_size=self.vocab_size,
|
93 |
+
hidden_size=self.hidden_size,
|
94 |
+
num_hidden_layers=self.num_hidden_layers,
|
95 |
+
num_attention_heads=self.num_attention_heads,
|
96 |
+
dim_ff=self.intermediate_size,
|
97 |
+
position_bias_num_buckets=self.num_buckets,
|
98 |
+
position_bias_max_distance=self.max_distance,
|
99 |
+
position_bias_num_segment_buckets=self.position_bias_num_segment_buckets,
|
100 |
+
use_cache=True,
|
101 |
+
init_std=self.init_std,
|
102 |
+
return_dict=self.return_dict,
|
103 |
+
)
|
104 |
+
|
105 |
+
def create_and_check_cpmbee_model(self, config, input_ids, *args):
|
106 |
+
model = CpmBeeModel(config=config)
|
107 |
+
model.to(torch_device)
|
108 |
+
model.eval()
|
109 |
+
|
110 |
+
hidden_states = model(**input_ids).last_hidden_state
|
111 |
+
|
112 |
+
self.parent.assertEqual(hidden_states.shape, (self.batch_size, self.seq_length, config.hidden_size))
|
113 |
+
|
114 |
+
def create_and_check_lm_head_model(self, config, input_ids, *args):
|
115 |
+
model = CpmBeeForCausalLM(config)
|
116 |
+
model.to(torch_device)
|
117 |
+
input_ids["input_ids"] = input_ids["input_ids"].to(torch_device)
|
118 |
+
model.eval()
|
119 |
+
|
120 |
+
model_output = model(**input_ids)
|
121 |
+
self.parent.assertEqual(
|
122 |
+
model_output.logits.shape,
|
123 |
+
(self.batch_size, self.seq_length, config.vocab_size),
|
124 |
+
)
|
125 |
+
|
126 |
+
def prepare_config_and_inputs_for_common(self):
|
127 |
+
config, inputs_dict = self.prepare_config_and_inputs()
|
128 |
+
return config, inputs_dict
|
129 |
+
|
130 |
+
|
131 |
+
@require_torch
|
132 |
+
class CpmBeeModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
|
133 |
+
all_model_classes = (CpmBeeModel, CpmBeeForCausalLM) if is_torch_available() else ()
|
134 |
+
pipeline_model_mapping = (
|
135 |
+
{"feature-extraction": CpmBeeModel, "text-generation": CpmBeeForCausalLM} if is_torch_available() else {}
|
136 |
+
)
|
137 |
+
|
138 |
+
test_pruning = False
|
139 |
+
test_missing_keys = False
|
140 |
+
test_mismatched_shapes = False
|
141 |
+
test_head_masking = False
|
142 |
+
test_resize_embeddings = False
|
143 |
+
|
144 |
+
def setUp(self):
|
145 |
+
self.model_tester = CpmBeeModelTester(self)
|
146 |
+
self.config_tester = ConfigTester(self, config_class=CpmBeeConfig)
|
147 |
+
|
148 |
+
def test_config(self):
|
149 |
+
self.config_tester.create_and_test_config_common_properties()
|
150 |
+
self.config_tester.create_and_test_config_to_json_string()
|
151 |
+
self.config_tester.create_and_test_config_to_json_file()
|
152 |
+
self.config_tester.create_and_test_config_from_and_save_pretrained()
|
153 |
+
self.config_tester.check_config_can_be_init_without_params()
|
154 |
+
self.config_tester.check_config_arguments_init()
|
155 |
+
|
156 |
+
def test_inputs_embeds(self):
|
157 |
+
unittest.skip("CPMBee doesn't support input_embeds.")(self.test_inputs_embeds)
|
158 |
+
|
159 |
+
def test_retain_grad_hidden_states_attentions(self):
|
160 |
+
unittest.skip(
|
161 |
+
"CPMBee doesn't support retain grad in hidden_states or attentions, because prompt management will peel off the output.hidden_states from graph.\
|
162 |
+
So is attentions. We strongly recommand you use loss to tune model."
|
163 |
+
)(self.test_retain_grad_hidden_states_attentions)
|
164 |
+
|
165 |
+
def test_cpmbee_model(self):
|
166 |
+
config, inputs = self.model_tester.prepare_config_and_inputs()
|
167 |
+
self.model_tester.create_and_check_cpmbee_model(config, inputs)
|
168 |
+
|
169 |
+
def test_cpmbee_lm_head_model(self):
|
170 |
+
config, inputs = self.model_tester.prepare_config_and_inputs()
|
171 |
+
self.model_tester.create_and_check_lm_head_model(config, inputs)
|
172 |
+
|
173 |
+
|
174 |
+
@require_torch
|
175 |
+
class CpmBeeForCausalLMlIntegrationTest(unittest.TestCase):
|
176 |
+
@tooslow
|
177 |
+
def test_simple_generation(self):
|
178 |
+
texts = {"input": "今天天气不错,", "<ans>": ""}
|
179 |
+
model = CpmBeeForCausalLM.from_pretrained("openbmb/cpm-bee-10b")
|
180 |
+
tokenizer = CpmBeeTokenizer.from_pretrained("openbmb/cpm-bee-10b")
|
181 |
+
output_texts = model.generate(texts, tokenizer)
|
182 |
+
expected_output = {"input": "今天天气不错,", "<ans>": "适合睡觉。"}
|
183 |
+
self.assertEqual(expected_output["<ans>"], output_texts["<ans>"])
|
test_tokenization_cpmbee.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Testing suite for the PyTorch CpmBee tokenizer. """
|
16 |
+
|
17 |
+
import os
|
18 |
+
import unittest
|
19 |
+
|
20 |
+
from transformers.models.cpmbee.tokenization_cpmbee import VOCAB_FILES_NAMES, CpmBeeTokenizer
|
21 |
+
from transformers.tokenization_utils import AddedToken
|
22 |
+
|
23 |
+
from ...test_tokenization_common import TokenizerTesterMixin
|
24 |
+
|
25 |
+
|
26 |
+
class CPMBeeTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
27 |
+
tokenizer_class = CpmBeeTokenizer
|
28 |
+
test_rust_tokenizer = False
|
29 |
+
|
30 |
+
def setUp(self):
|
31 |
+
super().setUp()
|
32 |
+
|
33 |
+
vocab_tokens = [
|
34 |
+
"<d>",
|
35 |
+
"</d>",
|
36 |
+
"<s>",
|
37 |
+
"</s>",
|
38 |
+
"</_>",
|
39 |
+
"<unk>",
|
40 |
+
"<pad>",
|
41 |
+
"<mask>",
|
42 |
+
"</n>",
|
43 |
+
"我",
|
44 |
+
"是",
|
45 |
+
"C",
|
46 |
+
"P",
|
47 |
+
"M",
|
48 |
+
"B",
|
49 |
+
"e",
|
50 |
+
"e",
|
51 |
+
]
|
52 |
+
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
|
53 |
+
vocab_tokens = list(set(vocab_tokens))
|
54 |
+
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
|
55 |
+
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
|
56 |
+
|
57 |
+
# override test_add_tokens_tokenizer because <...> is special token in CpmBeeTokenizer.
|
58 |
+
def test_add_tokens_tokenizer(self):
|
59 |
+
tokenizers = self.get_tokenizers(do_lower_case=False)
|
60 |
+
for tokenizer in tokenizers:
|
61 |
+
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
62 |
+
vocab_size = tokenizer.vocab_size
|
63 |
+
all_size = len(tokenizer)
|
64 |
+
|
65 |
+
self.assertNotEqual(vocab_size, 0)
|
66 |
+
|
67 |
+
# We usually have added tokens from the start in tests because our vocab fixtures are
|
68 |
+
# smaller than the original vocabs - let's not assert this
|
69 |
+
# self.assertEqual(vocab_size, all_size)
|
70 |
+
|
71 |
+
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
|
72 |
+
added_toks = tokenizer.add_tokens(new_toks)
|
73 |
+
vocab_size_2 = tokenizer.vocab_size
|
74 |
+
all_size_2 = len(tokenizer)
|
75 |
+
|
76 |
+
self.assertNotEqual(vocab_size_2, 0)
|
77 |
+
self.assertEqual(vocab_size, vocab_size_2)
|
78 |
+
self.assertEqual(added_toks, len(new_toks))
|
79 |
+
self.assertEqual(all_size_2, all_size + len(new_toks))
|
80 |
+
|
81 |
+
tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
|
82 |
+
|
83 |
+
self.assertGreaterEqual(len(tokens), 4)
|
84 |
+
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
|
85 |
+
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
|
86 |
+
|
87 |
+
new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||;;;||;"}
|
88 |
+
added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
|
89 |
+
vocab_size_3 = tokenizer.vocab_size
|
90 |
+
all_size_3 = len(tokenizer)
|
91 |
+
|
92 |
+
self.assertNotEqual(vocab_size_3, 0)
|
93 |
+
self.assertEqual(vocab_size, vocab_size_3)
|
94 |
+
self.assertEqual(added_toks_2, len(new_toks_2))
|
95 |
+
self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
|
96 |
+
|
97 |
+
tokens = tokenizer.encode(
|
98 |
+
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||;;;||; l", add_special_tokens=False
|
99 |
+
)
|
100 |
+
|
101 |
+
self.assertGreaterEqual(len(tokens), 6)
|
102 |
+
self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
|
103 |
+
self.assertGreater(tokens[0], tokens[1])
|
104 |
+
self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
|
105 |
+
self.assertGreater(tokens[-2], tokens[-3])
|
106 |
+
self.assertEqual(tokens[0], tokenizer.eos_token_id)
|
107 |
+
self.assertEqual(tokens[-2], tokenizer.pad_token_id)
|
108 |
+
|
109 |
+
def test_added_tokens_do_lower_case(self):
|
110 |
+
tokenizers = self.get_tokenizers(do_lower_case=True)
|
111 |
+
for tokenizer in tokenizers:
|
112 |
+
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
113 |
+
if not hasattr(tokenizer, "do_lower_case") or not tokenizer.do_lower_case:
|
114 |
+
continue
|
115 |
+
|
116 |
+
special_token = tokenizer.all_special_tokens[0]
|
117 |
+
|
118 |
+
text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
|
119 |
+
text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
|
120 |
+
|
121 |
+
toks_before_adding = tokenizer.tokenize(text) # toks before adding new_toks
|
122 |
+
|
123 |
+
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
|
124 |
+
added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks])
|
125 |
+
|
126 |
+
toks_after_adding = tokenizer.tokenize(text)
|
127 |
+
toks_after_adding2 = tokenizer.tokenize(text2)
|
128 |
+
|
129 |
+
# Rust tokenizers dont't lowercase added tokens at the time calling `tokenizer.add_tokens`,
|
130 |
+
# while python tokenizers do, so new_toks 0 and 2 would be treated as the same, so do new_toks 1 and 3.
|
131 |
+
self.assertIn(added, [2, 4])
|
132 |
+
|
133 |
+
self.assertListEqual(toks_after_adding, toks_after_adding2)
|
134 |
+
self.assertTrue(
|
135 |
+
len(toks_before_adding) > len(toks_after_adding), # toks_before_adding should be longer
|
136 |
+
)
|
137 |
+
|
138 |
+
# Check that none of the special tokens are lowercased
|
139 |
+
sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
|
140 |
+
# Convert the tokenized list to str as some special tokens are tokenized like normal tokens
|
141 |
+
# which have a prefix spacee e.g. the mask token of Albert, and cannot match the original
|
142 |
+
# special tokens exactly.
|
143 |
+
tokenized_sequence = "".join(tokenizer.tokenize(sequence_with_special_tokens))
|
144 |
+
|
145 |
+
for special_token in tokenizer.all_special_tokens:
|
146 |
+
self.assertTrue(special_token in tokenized_sequence)
|
147 |
+
|
148 |
+
tokenizers = self.get_tokenizers(do_lower_case=True)
|
149 |
+
for tokenizer in tokenizers:
|
150 |
+
with self.subTest(f"{tokenizer.__class__.__name__}"):
|
151 |
+
if hasattr(tokenizer, "do_lower_case") and tokenizer.do_lower_case:
|
152 |
+
continue
|
153 |
+
|
154 |
+
special_token = tokenizer.all_special_tokens[0]
|
155 |
+
|
156 |
+
text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
|
157 |
+
text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
|
158 |
+
|
159 |
+
toks_before_adding = tokenizer.tokenize(text) # toks before adding new_toks
|
160 |
+
|
161 |
+
new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
|
162 |
+
added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks])
|
163 |
+
self.assertIn(added, [2, 4])
|
164 |
+
|
165 |
+
toks_after_adding = tokenizer.tokenize(text)
|
166 |
+
toks_after_adding2 = tokenizer.tokenize(text2)
|
167 |
+
|
168 |
+
self.assertEqual(len(toks_after_adding), len(toks_after_adding2)) # Length should still be the same
|
169 |
+
self.assertNotEqual(
|
170 |
+
toks_after_adding[1], toks_after_adding2[1]
|
171 |
+
) # But at least the first non-special tokens should differ
|
172 |
+
self.assertTrue(
|
173 |
+
len(toks_before_adding) > len(toks_after_adding), # toks_before_adding should be longer
|
174 |
+
)
|
175 |
+
|
176 |
+
def test_pre_tokenization(self):
|
177 |
+
tokenizer = CpmBeeTokenizer.from_pretrained("openbmb/cpm-bee-10b")
|
178 |
+
texts = {"input": "你好,", "<ans>": ""}
|
179 |
+
tokens = tokenizer(texts)
|
180 |
+
tokens = tokens["input_ids"][0]
|
181 |
+
|
182 |
+
input_tokens = [6, 8, 7, 6, 65678, 7, 6, 10273, 246, 7, 6, 9, 7]
|
183 |
+
self.assertListEqual(tokens, input_tokens)
|
184 |
+
|
185 |
+
normalized_text = "<s><root></s><s>input</s><s>你好,</s><s><ans></s>"
|
186 |
+
reconstructed_text = tokenizer.decode(tokens)
|
187 |
+
self.assertEqual(reconstructed_text, normalized_text)
|
tokenization_cpmbee.py
ADDED
@@ -0,0 +1,868 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for CpmBee."""
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
from typing_extensions import TypedDict
|
22 |
+
|
23 |
+
from ...tokenization_utils import PaddingStrategy, PreTrainedTokenizer, TensorType
|
24 |
+
from ...tokenization_utils_base import AddedToken, BatchEncoding, TextInput, TruncationStrategy
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
31 |
+
|
32 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
33 |
+
"vocab_file": {
|
34 |
+
"openbmb/cpm-bee-10b": "https://huggingface.co/openbmb/cpm-bee-10b/blob/main/vocab.txt",
|
35 |
+
"openbmb/cpm-bee-5b": "https://huggingface.co/openbmb/cpm-bee-5b/blob/main/vocab.txt",
|
36 |
+
"openbmb/cpm-bee-2b": "https://huggingface.co/openbmb/cpm-bee-2b/blob/main/vocab.txt",
|
37 |
+
"openbmb/cpm-bee-1b": "https://huggingface.co/openbmb/cpm-bee-1b/blob/main/vocab.txt",
|
38 |
+
},
|
39 |
+
}
|
40 |
+
|
41 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
42 |
+
"openbmb/cpm-bee-10b": 4096,
|
43 |
+
"openbmb/cpm-bee-5b": 4096,
|
44 |
+
"openbmb/cpm-bee-2b": 4096,
|
45 |
+
"openbmb/cpm-bee-1b": 4096,
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
class _PrevExtTableStates(TypedDict):
|
50 |
+
ext_table: Dict[int, str]
|
51 |
+
token_id_table: Dict[str, Dict[int, int]]
|
52 |
+
|
53 |
+
|
54 |
+
CPMBeeInputType = Union[str, Dict[str, "CPMBeeInputType"]]
|
55 |
+
|
56 |
+
|
57 |
+
def rel_to_bucket(n_up: int, n_down: int, max_depth: int = 8):
|
58 |
+
ret = n_up * max_depth + n_down
|
59 |
+
if ret == 0:
|
60 |
+
return ret
|
61 |
+
else:
|
62 |
+
# bucket 1 is reserved for incontext samples
|
63 |
+
return ret + 1
|
64 |
+
|
65 |
+
|
66 |
+
class _DictTree(TypedDict):
|
67 |
+
value: str
|
68 |
+
children: List["_DictTree"]
|
69 |
+
depth: int
|
70 |
+
segment_id: int
|
71 |
+
need_predict: bool
|
72 |
+
|
73 |
+
|
74 |
+
class CpmBeeTokenizer(PreTrainedTokenizer):
|
75 |
+
"""
|
76 |
+
Construct a CPMBee tokenizer.
|
77 |
+
|
78 |
+
Args:
|
79 |
+
vocab_file (`str`):
|
80 |
+
Path to the vocabulary file.
|
81 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
82 |
+
The beginning of sequence token.
|
83 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
84 |
+
The end of sequence token.
|
85 |
+
line_token (`str`, *optional*, defaults to `"\n"`):
|
86 |
+
The line token.
|
87 |
+
space_token (`str`, *optional*, defaults to `" "`):
|
88 |
+
The space token.
|
89 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
90 |
+
The unknown token.
|
91 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
92 |
+
The mask token.
|
93 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
94 |
+
The token used for padding.
|
95 |
+
padding_side (`str`, *optional*, defaults to `"left"`):
|
96 |
+
The padding side. CPM-Bee will use left padding by default.
|
97 |
+
"""
|
98 |
+
|
99 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
100 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
101 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
102 |
+
model_input_names: List[str] = [
|
103 |
+
"input_ids",
|
104 |
+
"attention_mask",
|
105 |
+
"input_id_sub",
|
106 |
+
"position",
|
107 |
+
"context",
|
108 |
+
"sample_ids",
|
109 |
+
"num_segments",
|
110 |
+
"segment",
|
111 |
+
"segment_rel_offset",
|
112 |
+
"segment_rel",
|
113 |
+
]
|
114 |
+
add_prefix_space = False
|
115 |
+
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
vocab_file,
|
119 |
+
bos_token="<s>",
|
120 |
+
eos_token="</s>",
|
121 |
+
line_token="\n",
|
122 |
+
space_token=" ",
|
123 |
+
unk_token="<unk>",
|
124 |
+
mask_token="<mask>",
|
125 |
+
pad_token="<pad>",
|
126 |
+
padding_side="left",
|
127 |
+
**kwargs,
|
128 |
+
):
|
129 |
+
super().__init__(
|
130 |
+
bos_token=bos_token,
|
131 |
+
eos_token=eos_token,
|
132 |
+
line_token=line_token,
|
133 |
+
space_token=space_token,
|
134 |
+
unk_token=unk_token,
|
135 |
+
mask_token=mask_token,
|
136 |
+
pad_token=pad_token,
|
137 |
+
padding_side=padding_side,
|
138 |
+
**kwargs,
|
139 |
+
)
|
140 |
+
|
141 |
+
self.encoder: Dict[str, int] = {}
|
142 |
+
|
143 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
144 |
+
for token in reader.readlines():
|
145 |
+
token = token.rstrip("\n")
|
146 |
+
if len(token) == 0:
|
147 |
+
continue
|
148 |
+
self.encoder[token] = len(self.encoder)
|
149 |
+
|
150 |
+
self.encoder[" "] = self.encoder["</_>"]
|
151 |
+
self.encoder["\n"] = self.encoder["</n>"]
|
152 |
+
del self.encoder["</_>"]
|
153 |
+
del self.encoder["</n>"]
|
154 |
+
|
155 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
156 |
+
|
157 |
+
self._max_word_len = max([len(x) for x in self.encoder.keys()])
|
158 |
+
self.cpmbee_special_tokens = {k: v for k, v in self.encoder.items() if k.startswith("<") and k.endswith(">")}
|
159 |
+
|
160 |
+
self.ext_table: Dict[int, str] = {}
|
161 |
+
self.ext_table_rev: Dict[str, int] = {}
|
162 |
+
|
163 |
+
self.token_id_table: Dict[str, Dict[int, int]] = {}
|
164 |
+
self.ext_special_tokens = []
|
165 |
+
|
166 |
+
self.ext_args_for_model = [
|
167 |
+
"input_id_subs",
|
168 |
+
"input_pos",
|
169 |
+
"context",
|
170 |
+
"segment_ids",
|
171 |
+
"segment_rel_offset",
|
172 |
+
"segment_rel",
|
173 |
+
"sample_ids",
|
174 |
+
"num_segments",
|
175 |
+
"predict_segments",
|
176 |
+
"answer_placeholders",
|
177 |
+
"ext_table",
|
178 |
+
"token_id_table",
|
179 |
+
]
|
180 |
+
|
181 |
+
@property
|
182 |
+
def bod_token_id(self):
|
183 |
+
return self.encoder[self.bod_token]
|
184 |
+
|
185 |
+
@property
|
186 |
+
def eod_token_id(self):
|
187 |
+
return self.encoder[self.eod_token]
|
188 |
+
|
189 |
+
@property
|
190 |
+
def newline_id(self):
|
191 |
+
return self.encoder[self.line_token]
|
192 |
+
|
193 |
+
@property
|
194 |
+
def vocab_size(self) -> int:
|
195 |
+
return len(self.encoder)
|
196 |
+
|
197 |
+
def __len__(self):
|
198 |
+
"""
|
199 |
+
Size of the full vocabulary with the added tokens.
|
200 |
+
"""
|
201 |
+
return self.vocab_size + len(self.added_tokens_encoder)
|
202 |
+
|
203 |
+
def get_vocab(self):
|
204 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
205 |
+
|
206 |
+
def get_piece(self, text: str) -> str:
|
207 |
+
"""
|
208 |
+
Match with maximum length.
|
209 |
+
"""
|
210 |
+
len_text = len(text)
|
211 |
+
for i in range(len(text)):
|
212 |
+
sub = text[: len_text - i]
|
213 |
+
if (sub in self.encoder) or (sub in self.added_tokens_encoder):
|
214 |
+
return sub
|
215 |
+
return text[0]
|
216 |
+
|
217 |
+
def tokenize(self, text: TextInput, **kwargs) -> List[str]:
|
218 |
+
r"""
|
219 |
+
Override the `tokenize` to meet the needs of CPMBee:
|
220 |
+
1. Mark the special token with `<` and `>`. The `<>` will be ignored.
|
221 |
+
2. Split sentences by the marked special tokens.
|
222 |
+
3. Record the marked special token by `ext_table` and `ext_table_rev`.
|
223 |
+
4. Tokenize the sentence without special tokens.
|
224 |
+
"""
|
225 |
+
for_cpmbee = kwargs.get("for_cpmbee", False)
|
226 |
+
all_special_tokens_extended = {
|
227 |
+
str(t): t for t in self.all_special_tokens_extended if isinstance(t, AddedToken)
|
228 |
+
}
|
229 |
+
|
230 |
+
sentence_split = [""]
|
231 |
+
is_special_token = False
|
232 |
+
for i, c in enumerate(text):
|
233 |
+
if is_special_token:
|
234 |
+
if c == "<":
|
235 |
+
tail = sentence_split.pop(-1)
|
236 |
+
sentence_split[-1] += tail
|
237 |
+
sentence_split.append(c)
|
238 |
+
elif c == ">":
|
239 |
+
# end of special token
|
240 |
+
sentence_split[-1] += c
|
241 |
+
if sentence_split[-1] == "<>":
|
242 |
+
continue
|
243 |
+
is_special_token = False
|
244 |
+
sentence_split.append("")
|
245 |
+
else:
|
246 |
+
sentence_split[-1] += c
|
247 |
+
else:
|
248 |
+
if c == "<":
|
249 |
+
is_special_token = True
|
250 |
+
sentence_split.append(c)
|
251 |
+
else:
|
252 |
+
sentence_split[-1] += c
|
253 |
+
if is_special_token:
|
254 |
+
tail = sentence_split.pop(-1)
|
255 |
+
sentence_split[-1] += tail
|
256 |
+
|
257 |
+
output_tokens = []
|
258 |
+
for i, part in enumerate(sentence_split):
|
259 |
+
if (i & 1) == 1:
|
260 |
+
# special token
|
261 |
+
output_tokens.append(part)
|
262 |
+
if for_cpmbee and (part not in self.encoder) and (part not in self.ext_table_rev):
|
263 |
+
self.ext_table_rev[part] = len(self.ext_table_rev) + self.vocab_size
|
264 |
+
self.ext_table[self.ext_table_rev[part]] = part
|
265 |
+
else:
|
266 |
+
output_tokens.extend(self._tokenize(part, for_cpmbee=for_cpmbee))
|
267 |
+
|
268 |
+
# drop spaces
|
269 |
+
for i, token in enumerate(output_tokens):
|
270 |
+
if token in self.added_tokens_encoder:
|
271 |
+
token = all_special_tokens_extended.get(token, None)
|
272 |
+
left = output_tokens[i - 1] if i > 0 else None
|
273 |
+
right = output_tokens[i + 1] if i < len(output_tokens) - 1 else None
|
274 |
+
if isinstance(token, AddedToken):
|
275 |
+
if token.rstrip and right:
|
276 |
+
# A bit counter-intuitive but we strip the left of the string
|
277 |
+
# since tok_extended.rstrip means the special token is eating all white spaces on its right
|
278 |
+
output_tokens[i + 1] = right.lstrip()
|
279 |
+
# Strip white spaces on the left
|
280 |
+
if token.lstrip and left:
|
281 |
+
output_tokens[i - 1] = left.rstrip() # Opposite here
|
282 |
+
else:
|
283 |
+
if right:
|
284 |
+
output_tokens[i + 1] = right.lstrip()
|
285 |
+
if left:
|
286 |
+
output_tokens[i - 1] = left.rstrip()
|
287 |
+
|
288 |
+
skipped_tokens = []
|
289 |
+
for token in output_tokens:
|
290 |
+
if not token:
|
291 |
+
continue
|
292 |
+
else:
|
293 |
+
skipped_tokens.append(token)
|
294 |
+
|
295 |
+
return skipped_tokens
|
296 |
+
|
297 |
+
def _tokenize(self, text, **kwargs):
|
298 |
+
"""
|
299 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
300 |
+
vocabulary.
|
301 |
+
|
302 |
+
Do NOT take care of added tokens. Record the unk tokens and special tokens in `ext_table` and `ext_table_rev`.
|
303 |
+
"""
|
304 |
+
for_cpmbee = kwargs.get("for_cpmbee", False)
|
305 |
+
output_tokens = []
|
306 |
+
|
307 |
+
part_st = 0
|
308 |
+
last_unk = None
|
309 |
+
while part_st < len(text):
|
310 |
+
piece = self.get_piece(text[part_st:])
|
311 |
+
if piece in self.encoder or self.added_tokens_encoder:
|
312 |
+
if last_unk is None:
|
313 |
+
output_tokens.append(piece)
|
314 |
+
else:
|
315 |
+
if for_cpmbee and (last_unk not in self.ext_table_rev):
|
316 |
+
self.ext_table_rev[last_unk] = len(self.ext_table_rev) + self.vocab_size
|
317 |
+
self.ext_table[self.ext_table_rev[last_unk]] = last_unk
|
318 |
+
output_tokens.append(last_unk)
|
319 |
+
output_tokens.append(piece)
|
320 |
+
last_unk = None
|
321 |
+
else:
|
322 |
+
if last_unk is None:
|
323 |
+
last_unk = piece
|
324 |
+
else:
|
325 |
+
last_unk += piece
|
326 |
+
part_st += len(piece)
|
327 |
+
if last_unk is not None:
|
328 |
+
# part end with UNK
|
329 |
+
if for_cpmbee and (last_unk not in self.ext_table_rev):
|
330 |
+
self.ext_table_rev[last_unk] = len(self.ext_table_rev) + self.vocab_size
|
331 |
+
self.ext_table[self.ext_table_rev[last_unk]] = last_unk
|
332 |
+
output_tokens.append(last_unk)
|
333 |
+
|
334 |
+
return output_tokens
|
335 |
+
|
336 |
+
def check(self, token):
|
337 |
+
return token in self.encoder
|
338 |
+
|
339 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
340 |
+
return "".join(tokens)
|
341 |
+
|
342 |
+
def _convert_token_to_id(self, token: str):
|
343 |
+
"""Converts a token (str) in an id using the vocab and ext_table."""
|
344 |
+
if token in self.encoder:
|
345 |
+
return self.encoder.get(token)
|
346 |
+
elif token in self.ext_table_rev:
|
347 |
+
return self.ext_table_rev[token]
|
348 |
+
elif token in self.added_tokens_encoder:
|
349 |
+
return self.added_tokens_encoder[token]
|
350 |
+
else:
|
351 |
+
return self.unk_token_id
|
352 |
+
|
353 |
+
def _convert_id_to_token(self, index):
|
354 |
+
"""Converts an index (integer) in a token (str) using the vocab and ext_table."""
|
355 |
+
if index in self.ext_table:
|
356 |
+
return self.ext_table[index]
|
357 |
+
elif index in self.added_tokens_decoder:
|
358 |
+
return self.added_tokens_decoder[index]
|
359 |
+
else:
|
360 |
+
if index >= 0:
|
361 |
+
return self.decoder[index]
|
362 |
+
|
363 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
364 |
+
if os.path.isdir(save_directory):
|
365 |
+
vocab_file = os.path.join(
|
366 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
367 |
+
)
|
368 |
+
else:
|
369 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
370 |
+
index = 0
|
371 |
+
self.encoder["</n>"] = self.encoder["\n"]
|
372 |
+
del self.encoder["\n"]
|
373 |
+
self.encoder["</_>"] = self.encoder[" "]
|
374 |
+
del self.encoder[" "]
|
375 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
376 |
+
for token, token_index in sorted(self.encoder.items(), key=lambda x: x[1]):
|
377 |
+
if index != token_index:
|
378 |
+
logger.warning(
|
379 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
380 |
+
" Please check that the vocabulary is not corrupted!"
|
381 |
+
)
|
382 |
+
index = token_index
|
383 |
+
writer.write(token + "\n")
|
384 |
+
index += 1
|
385 |
+
return (vocab_file,)
|
386 |
+
|
387 |
+
def __call__(self, text, *args, **kwargs):
|
388 |
+
r"""
|
389 |
+
CPMBee `call` method will use `_tokenize_cpmbee` when the input type is dict.
|
390 |
+
"""
|
391 |
+
if isinstance(text, dict):
|
392 |
+
return self._batch_tokenize_cpmbee([text], *args, **kwargs)
|
393 |
+
elif isinstance(text, (list, tuple)):
|
394 |
+
if isinstance(text[0], dict):
|
395 |
+
return self._batch_tokenize_cpmbee(text, *args, **kwargs)
|
396 |
+
else:
|
397 |
+
return super().__call__(text, *args, **kwargs)
|
398 |
+
else:
|
399 |
+
return super().__call__(text, *args, **kwargs)
|
400 |
+
|
401 |
+
# 分词
|
402 |
+
def _tokenize_cpmbee(self, data: TextInput, *args, **kwargs) -> List[str]:
|
403 |
+
"""
|
404 |
+
A tokenize method to process dict data. Exclusive for CPMBee.
|
405 |
+
"""
|
406 |
+
if isinstance(data, str):
|
407 |
+
data = json.loads(data)
|
408 |
+
if not isinstance(data, Dict):
|
409 |
+
raise TypeError(
|
410 |
+
"CpmBeeTokenizer input data should be dict or str in dict format, but got {}".format(type(data))
|
411 |
+
)
|
412 |
+
|
413 |
+
# 1. prepare answer placeholder
|
414 |
+
answer_placeholders = []
|
415 |
+
|
416 |
+
def _put_placeholder(data: Any, path: List[str] = []):
|
417 |
+
if isinstance(data, dict):
|
418 |
+
ret = {}
|
419 |
+
for k, v in data.items():
|
420 |
+
ret[k] = _put_placeholder(v, path + [k])
|
421 |
+
return ret
|
422 |
+
else:
|
423 |
+
answer_placeholders.append(path)
|
424 |
+
return "<ans_{}>".format(len(answer_placeholders))
|
425 |
+
|
426 |
+
data["<ans>"] = _put_placeholder(data["<ans>"])
|
427 |
+
|
428 |
+
(
|
429 |
+
input_ids,
|
430 |
+
input_id_subs,
|
431 |
+
context,
|
432 |
+
segment_ids,
|
433 |
+
segment_rel,
|
434 |
+
n_segments,
|
435 |
+
table_states,
|
436 |
+
) = self.convert_data_to_id(data, shuffle_answer=False, max_depth=8)
|
437 |
+
|
438 |
+
# <ans> mapping from sub to id
|
439 |
+
sub_ans_map: Dict[int, int] = {}
|
440 |
+
for fake_id, token_sub in table_states["token_id_table"]["<ans>"].items():
|
441 |
+
token = table_states["ext_table"][fake_id]
|
442 |
+
if token.startswith("<ans_") and token.endswith(">"):
|
443 |
+
ans_id = int(token[5:-1])
|
444 |
+
sub_ans_map[token_sub] = ans_id
|
445 |
+
|
446 |
+
tmp_input_ids = []
|
447 |
+
tmp_input_sub = []
|
448 |
+
tmp_input_seg = []
|
449 |
+
|
450 |
+
# get predict segments
|
451 |
+
predict_segments: List[Tuple[int, int]] = []
|
452 |
+
for i in range(input_ids.shape[0]):
|
453 |
+
if context[i] == 0:
|
454 |
+
if input_ids[i] == self.encoder["<ans>"]:
|
455 |
+
# is ans
|
456 |
+
# (segment_id, ans_id)
|
457 |
+
predict_segments.append((segment_ids[i], sub_ans_map[input_id_subs[i]]))
|
458 |
+
else:
|
459 |
+
tmp_input_ids.append(input_ids[i])
|
460 |
+
tmp_input_sub.append(input_id_subs[i])
|
461 |
+
tmp_input_seg.append(segment_ids[i])
|
462 |
+
|
463 |
+
if len(predict_segments) == 0:
|
464 |
+
raise ValueError("No answer to predict")
|
465 |
+
|
466 |
+
input_ids = np.array(tmp_input_ids, dtype=np.int32) # all context
|
467 |
+
input_id_subs = np.array(tmp_input_sub, dtype=np.int32) # [0, 0, 0, 0, 1, 0, 0, 2, 0, ...]
|
468 |
+
context = np.full_like(tmp_input_ids, 1, dtype=np.int8) # [1, 1, 1, ...]
|
469 |
+
segment_ids = np.array(tmp_input_seg, dtype=np.int32) # [0, 0, 0, 1, 1, 1, 2, 2, 2, 2, ...]
|
470 |
+
sample_ids = np.zeros(input_ids.shape, dtype=np.int32) # [0, 0, 0, 0, ...]
|
471 |
+
segment_rel_offset = np.zeros(input_ids.shape, dtype=np.int32) # [0, 0, 0, ...]
|
472 |
+
num_segments = np.full(input_ids.shape, n_segments, dtype=np.int32) # [n_seg, n_seg, n_seg, ...]
|
473 |
+
input_pos = np.arange(input_ids.shape[0], dtype=np.int32) # [0, 1, 2, 3, 4, ...]
|
474 |
+
|
475 |
+
return (
|
476 |
+
self.prepare_for_model(
|
477 |
+
input_ids.tolist(),
|
478 |
+
input_id_subs=input_id_subs.tolist(),
|
479 |
+
input_pos=input_pos.tolist(),
|
480 |
+
context=context.tolist(),
|
481 |
+
segment_ids=segment_ids.tolist(),
|
482 |
+
segment_rel_offset=segment_rel_offset.tolist(),
|
483 |
+
segment_rel=segment_rel.tolist(),
|
484 |
+
sample_ids=sample_ids.tolist(),
|
485 |
+
num_segments=num_segments.tolist(),
|
486 |
+
**kwargs,
|
487 |
+
),
|
488 |
+
predict_segments,
|
489 |
+
answer_placeholders,
|
490 |
+
table_states["ext_table"],
|
491 |
+
table_states["token_id_table"],
|
492 |
+
)
|
493 |
+
|
494 |
+
def _batch_tokenize_cpmbee(self, data_lst, *args, **kwargs):
|
495 |
+
"""
|
496 |
+
Batched _token_cpmbee.
|
497 |
+
"""
|
498 |
+
device = kwargs.get("device", "cpu")
|
499 |
+
return_tensors = kwargs.get("return_tensors", None)
|
500 |
+
batch_outputs = {}
|
501 |
+
segment_rel_pack = []
|
502 |
+
other_info = []
|
503 |
+
|
504 |
+
batch_ext_table_map: Dict[Tuple[int, int], int] = {}
|
505 |
+
batch_ext_table_ids: List[int] = []
|
506 |
+
batch_ext_table_sub: List[int] = []
|
507 |
+
|
508 |
+
for data in data_lst:
|
509 |
+
self.ext_table = {}
|
510 |
+
self.ext_table_rev = {}
|
511 |
+
self.token_id_table = {}
|
512 |
+
(outputs, predict_segments, answer_placeholders, ext_table, token_id_table) = self._tokenize_cpmbee(
|
513 |
+
data,
|
514 |
+
truncation=None,
|
515 |
+
padding=PaddingStrategy.DO_NOT_PAD.value,
|
516 |
+
max_length=None,
|
517 |
+
pad_to_multiple_of=None,
|
518 |
+
return_attention_mask=False,
|
519 |
+
return_tensors=None,
|
520 |
+
)
|
521 |
+
rev_ext_table = {}
|
522 |
+
for token, mp in token_id_table.items():
|
523 |
+
if token == "<ans>":
|
524 |
+
continue
|
525 |
+
token_id = self.encoder[token]
|
526 |
+
for fake_id, token_sub in mp.items():
|
527 |
+
if token_sub > 0:
|
528 |
+
if (token_id, token_sub) not in batch_ext_table_map:
|
529 |
+
batch_ext_table_map[(token_id, token_sub)] = len(batch_ext_table_ids) + self.vocab_size
|
530 |
+
batch_ext_table_ids.append(token_id)
|
531 |
+
batch_ext_table_sub.append(token_sub)
|
532 |
+
rev_ext_table[batch_ext_table_map[(token_id, token_sub)]] = ext_table[fake_id]
|
533 |
+
else:
|
534 |
+
rev_ext_table[token_id] = ext_table[fake_id]
|
535 |
+
|
536 |
+
segment_rel_pack.append(np.array(outputs.pop("segment_rel")))
|
537 |
+
other_info.append(
|
538 |
+
{
|
539 |
+
"predict_segments": predict_segments,
|
540 |
+
"answer_placeholders": answer_placeholders,
|
541 |
+
"ext_table": rev_ext_table,
|
542 |
+
}
|
543 |
+
)
|
544 |
+
|
545 |
+
for key, value in outputs.items():
|
546 |
+
if key not in batch_outputs:
|
547 |
+
batch_outputs[key] = []
|
548 |
+
batch_outputs[key].append(value)
|
549 |
+
|
550 |
+
max_length = max([len(item) for item in batch_outputs[self.model_input_names[0]]])
|
551 |
+
batch_size = len(batch_outputs[self.model_input_names[0]])
|
552 |
+
for i in range(batch_size):
|
553 |
+
inputs = {k: v[i] for k, v in batch_outputs.items()}
|
554 |
+
|
555 |
+
for k, v in inputs.items():
|
556 |
+
required_input = v
|
557 |
+
|
558 |
+
needs_to_be_padded = len(required_input) != max_length
|
559 |
+
|
560 |
+
if needs_to_be_padded:
|
561 |
+
difference = max_length - len(required_input)
|
562 |
+
batch_outputs[k][i] = [self.pad_token_id] * difference + required_input
|
563 |
+
|
564 |
+
max_num_rels = 0
|
565 |
+
for rel in segment_rel_pack:
|
566 |
+
max_num_rels = max(max_num_rels, rel.shape[0])
|
567 |
+
padded_rels = np.zeros((len(segment_rel_pack), max_num_rels), dtype=np.int32)
|
568 |
+
for i, rel in enumerate(segment_rel_pack):
|
569 |
+
padded_rels[i, : rel.shape[0]] = rel
|
570 |
+
batch_outputs["segment_rel"] = padded_rels
|
571 |
+
batch_outputs["batch_ext_table_ids"] = np.array(batch_ext_table_ids, dtype=np.int32)
|
572 |
+
batch_outputs["batch_ext_table_sub"] = np.array(batch_ext_table_sub, dtype=np.int32)
|
573 |
+
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
574 |
+
if return_tensors == "pt":
|
575 |
+
batch_outputs = batch_outputs.to(device=device)
|
576 |
+
batch_outputs["other_info"] = other_info
|
577 |
+
|
578 |
+
return batch_outputs
|
579 |
+
|
580 |
+
def convert_data_to_id(
|
581 |
+
self,
|
582 |
+
data: Any,
|
583 |
+
prev_ext_states: Optional[_PrevExtTableStates] = None,
|
584 |
+
shuffle_answer: bool = True,
|
585 |
+
max_depth: int = 8,
|
586 |
+
):
|
587 |
+
"""
|
588 |
+
Parse a dict to data ids. Exclusive for CPMBee. It will
|
589 |
+
1. parse the dict to segments and get segment_rel, which for calculating of position_bias.
|
590 |
+
2. tokenize every segment.
|
591 |
+
"""
|
592 |
+
root: _DictTree = {
|
593 |
+
"value": "<root>",
|
594 |
+
"children": [],
|
595 |
+
"depth": 0,
|
596 |
+
"segment_id": 0,
|
597 |
+
"need_predict": False,
|
598 |
+
}
|
599 |
+
|
600 |
+
segments = [root]
|
601 |
+
|
602 |
+
def _build_dict_tree(data: CPMBeeInputType, depth: int, need_predict: bool) -> List[_DictTree]:
|
603 |
+
if isinstance(data, dict):
|
604 |
+
ret_list: List[_DictTree] = []
|
605 |
+
curr_items = list(data.items())
|
606 |
+
if need_predict and shuffle_answer:
|
607 |
+
access_idx = np.arange(len(curr_items))
|
608 |
+
np.random.shuffle(access_idx)
|
609 |
+
curr_items = [curr_items[idx] for idx in access_idx]
|
610 |
+
for k, v in curr_items:
|
611 |
+
child_info: _DictTree = {
|
612 |
+
"value": k,
|
613 |
+
"children": [],
|
614 |
+
"depth": depth,
|
615 |
+
"segment_id": len(segments),
|
616 |
+
"need_predict": False, # only leaves are contexts
|
617 |
+
}
|
618 |
+
segments.append(child_info)
|
619 |
+
child_info["children"] = _build_dict_tree(
|
620 |
+
v, depth + 1, need_predict or (depth == 1 and k == "<ans>")
|
621 |
+
) # elements in <root>.<ans>
|
622 |
+
|
623 |
+
ret_list.append(child_info)
|
624 |
+
return ret_list
|
625 |
+
else:
|
626 |
+
assert isinstance(data, str), "Invalid data {}".format(data)
|
627 |
+
ret: _DictTree = {
|
628 |
+
"value": data,
|
629 |
+
"children": [],
|
630 |
+
"depth": depth,
|
631 |
+
"segment_id": len(segments),
|
632 |
+
"need_predict": need_predict,
|
633 |
+
}
|
634 |
+
segments.append(ret)
|
635 |
+
return [ret]
|
636 |
+
|
637 |
+
root["children"] = _build_dict_tree(data, 1, False)
|
638 |
+
|
639 |
+
num_segments = len(segments)
|
640 |
+
segment_rel = np.zeros((num_segments * num_segments,), dtype=np.int32)
|
641 |
+
|
642 |
+
def _build_segment_rel(node: _DictTree) -> List[Tuple[int, int]]:
|
643 |
+
ret: List[Tuple[int, int]] = [(node["segment_id"], node["depth"])]
|
644 |
+
for child in node["children"]:
|
645 |
+
sub = _build_segment_rel(child)
|
646 |
+
for seg_id_1, depth_1 in sub:
|
647 |
+
for seg_id_2, depth_2 in ret:
|
648 |
+
n_up = min(depth_1 - node["depth"], max_depth - 1)
|
649 |
+
n_down = min(depth_2 - node["depth"], max_depth - 1)
|
650 |
+
segment_rel[seg_id_1 * num_segments + seg_id_2] = rel_to_bucket(
|
651 |
+
n_up, n_down, max_depth=max_depth
|
652 |
+
)
|
653 |
+
segment_rel[seg_id_2 * num_segments + seg_id_1] = rel_to_bucket(
|
654 |
+
n_down, n_up, max_depth=max_depth
|
655 |
+
)
|
656 |
+
ret.extend(sub)
|
657 |
+
return ret
|
658 |
+
|
659 |
+
_build_segment_rel(root)
|
660 |
+
|
661 |
+
input_ids: List[int] = []
|
662 |
+
input_id_subs: List[int] = []
|
663 |
+
segment_bound: List[Tuple[int, int]] = []
|
664 |
+
|
665 |
+
if prev_ext_states is not None:
|
666 |
+
self.ext_table = prev_ext_states["ext_table"]
|
667 |
+
self.token_id_table = prev_ext_states["token_id_table"]
|
668 |
+
|
669 |
+
for seg in segments:
|
670 |
+
# tokenize
|
671 |
+
tokens = self.convert_tokens_to_ids(self.tokenize(seg["value"], for_cpmbee=True))
|
672 |
+
|
673 |
+
token_id_subs = []
|
674 |
+
reid_token_ids = []
|
675 |
+
for idx in tokens:
|
676 |
+
if idx in self.ext_table:
|
677 |
+
# unk or special token
|
678 |
+
token = self.ext_table[idx]
|
679 |
+
if token.startswith("<") and token.endswith(">"):
|
680 |
+
# special token
|
681 |
+
if "_" in token:
|
682 |
+
token_name = token[1:-1].split("_", maxsplit=1)[0]
|
683 |
+
else:
|
684 |
+
token_name = token[1:-1]
|
685 |
+
token_name = "<{}>".format(token_name)
|
686 |
+
else:
|
687 |
+
token_name = "<unk>"
|
688 |
+
|
689 |
+
if token_name not in self.token_id_table:
|
690 |
+
self.token_id_table[token_name] = {}
|
691 |
+
if idx not in self.token_id_table[token_name]:
|
692 |
+
self.token_id_table[token_name][idx] = len(self.token_id_table[token_name])
|
693 |
+
if token_name not in self.encoder:
|
694 |
+
raise ValueError("Invalid token {}".format(token))
|
695 |
+
reid_token_ids.append(self.encoder[token_name])
|
696 |
+
token_id_subs.append(self.token_id_table[token_name][idx])
|
697 |
+
else:
|
698 |
+
reid_token_ids.append(idx)
|
699 |
+
token_id_subs.append(0)
|
700 |
+
tokens = [self.bos_token_id] + reid_token_ids
|
701 |
+
token_id_subs = [0] + token_id_subs
|
702 |
+
# eos_id 表示 no need_predict
|
703 |
+
if not seg["need_predict"]: # eos
|
704 |
+
tokens = tokens + [self.eos_token_id]
|
705 |
+
token_id_subs = token_id_subs + [0]
|
706 |
+
else:
|
707 |
+
# no eos
|
708 |
+
pass
|
709 |
+
begin = len(input_ids)
|
710 |
+
input_ids.extend(tokens)
|
711 |
+
input_id_subs.extend(token_id_subs)
|
712 |
+
end = len(input_ids)
|
713 |
+
segment_bound.append((begin, end))
|
714 |
+
|
715 |
+
ids = np.array(input_ids, dtype=np.int32)
|
716 |
+
id_subs = np.array(input_id_subs, dtype=np.int32)
|
717 |
+
segs = np.zeros((ids.shape[0],), dtype=np.int32) # 按segment_bound对seg编号
|
718 |
+
context = np.zeros((ids.shape[0],), dtype=np.int8)
|
719 |
+
for i, (begin, end) in enumerate(segment_bound):
|
720 |
+
if not segments[i]["need_predict"]:
|
721 |
+
context[begin:end] = 1
|
722 |
+
segs[begin:end] = i
|
723 |
+
|
724 |
+
curr_ext_table_states: _PrevExtTableStates = {
|
725 |
+
"ext_table": self.ext_table,
|
726 |
+
"token_id_table": self.token_id_table,
|
727 |
+
}
|
728 |
+
return ids, id_subs, context, segs, segment_rel, num_segments, curr_ext_table_states
|
729 |
+
|
730 |
+
def prepare_for_model(
|
731 |
+
self,
|
732 |
+
ids: List[int],
|
733 |
+
pair_ids: Optional[List[int]] = None,
|
734 |
+
add_special_tokens: bool = True,
|
735 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
736 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
737 |
+
max_length: Optional[int] = None,
|
738 |
+
stride: int = 0,
|
739 |
+
pad_to_multiple_of: Optional[int] = None,
|
740 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
741 |
+
return_token_type_ids: Optional[bool] = None,
|
742 |
+
return_attention_mask: Optional[bool] = None,
|
743 |
+
return_overflowing_tokens: bool = False,
|
744 |
+
return_special_tokens_mask: bool = False,
|
745 |
+
return_length: bool = False,
|
746 |
+
verbose: bool = True,
|
747 |
+
prepend_batch_axis: bool = False,
|
748 |
+
**kwargs,
|
749 |
+
) -> BatchEncoding:
|
750 |
+
"""
|
751 |
+
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
|
752 |
+
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
|
753 |
+
manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids*
|
754 |
+
different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return
|
755 |
+
overflowing tokens. Such a combination of arguments will raise an error.
|
756 |
+
|
757 |
+
Args:
|
758 |
+
ids (`List[int]`):
|
759 |
+
Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and
|
760 |
+
`convert_tokens_to_ids` methods.
|
761 |
+
pair_ids (`List[int]`, *optional*):
|
762 |
+
Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize`
|
763 |
+
and `convert_tokens_to_ids` methods.
|
764 |
+
"""
|
765 |
+
|
766 |
+
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
|
767 |
+
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
|
768 |
+
padding=padding,
|
769 |
+
truncation=truncation,
|
770 |
+
max_length=max_length,
|
771 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
772 |
+
verbose=verbose,
|
773 |
+
**kwargs,
|
774 |
+
)
|
775 |
+
|
776 |
+
pair = bool(pair_ids is not None)
|
777 |
+
len_ids = len(ids)
|
778 |
+
len_pair_ids = len(pair_ids) if pair else 0
|
779 |
+
|
780 |
+
if return_token_type_ids and not add_special_tokens:
|
781 |
+
raise ValueError(
|
782 |
+
"Asking to return token_type_ids while setting add_special_tokens to False "
|
783 |
+
"results in an undefined behavior. Please set add_special_tokens to True or "
|
784 |
+
"set return_token_type_ids to None."
|
785 |
+
)
|
786 |
+
|
787 |
+
if (
|
788 |
+
return_overflowing_tokens
|
789 |
+
and truncation_strategy == TruncationStrategy.LONGEST_FIRST
|
790 |
+
and pair_ids is not None
|
791 |
+
):
|
792 |
+
raise ValueError(
|
793 |
+
"Not possible to return overflowing tokens for pair of sequences with the "
|
794 |
+
"`longest_first`. Please select another truncation strategy than `longest_first`, "
|
795 |
+
"for instance `only_second` or `only_first`."
|
796 |
+
)
|
797 |
+
|
798 |
+
# Load from model defaults
|
799 |
+
if return_token_type_ids is None:
|
800 |
+
return_token_type_ids = "token_type_ids" in self.model_input_names
|
801 |
+
if return_attention_mask is None:
|
802 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
803 |
+
|
804 |
+
encoded_inputs = {}
|
805 |
+
|
806 |
+
# Compute the total size of the returned encodings
|
807 |
+
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
|
808 |
+
|
809 |
+
# Truncation: Handle max sequence length
|
810 |
+
overflowing_tokens = []
|
811 |
+
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
|
812 |
+
ids, pair_ids, overflowing_tokens = self.truncate_sequences(
|
813 |
+
ids,
|
814 |
+
pair_ids=pair_ids,
|
815 |
+
num_tokens_to_remove=total_len - max_length,
|
816 |
+
truncation_strategy=truncation_strategy,
|
817 |
+
stride=stride,
|
818 |
+
)
|
819 |
+
|
820 |
+
if return_overflowing_tokens:
|
821 |
+
encoded_inputs["overflowing_tokens"] = overflowing_tokens
|
822 |
+
encoded_inputs["num_truncated_tokens"] = total_len - max_length
|
823 |
+
|
824 |
+
# Add special tokens
|
825 |
+
if add_special_tokens:
|
826 |
+
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
|
827 |
+
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
|
828 |
+
else:
|
829 |
+
sequence = ids + pair_ids if pair else ids
|
830 |
+
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
|
831 |
+
|
832 |
+
# Build output dictionary
|
833 |
+
encoded_inputs["input_ids"] = sequence
|
834 |
+
if return_token_type_ids:
|
835 |
+
encoded_inputs["token_type_ids"] = token_type_ids
|
836 |
+
if return_special_tokens_mask:
|
837 |
+
if add_special_tokens:
|
838 |
+
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
|
839 |
+
else:
|
840 |
+
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
|
841 |
+
|
842 |
+
# Check lengths
|
843 |
+
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
|
844 |
+
|
845 |
+
# Padding
|
846 |
+
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
|
847 |
+
encoded_inputs = self.pad(
|
848 |
+
encoded_inputs,
|
849 |
+
max_length=max_length,
|
850 |
+
padding=padding_strategy.value,
|
851 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
852 |
+
return_attention_mask=return_attention_mask,
|
853 |
+
)
|
854 |
+
|
855 |
+
if return_length:
|
856 |
+
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
|
857 |
+
|
858 |
+
# for CPMBee, encode all the model arguments
|
859 |
+
for arg in self.ext_args_for_model:
|
860 |
+
v = kwargs.get(arg, None)
|
861 |
+
if v is not None:
|
862 |
+
encoded_inputs[arg] = v
|
863 |
+
|
864 |
+
batch_outputs = BatchEncoding(
|
865 |
+
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
|
866 |
+
)
|
867 |
+
|
868 |
+
return batch_outputs
|