Update README.md
Browse files
README.md
CHANGED
@@ -31,20 +31,34 @@ You can use the raw model for semantic segmentation. See the [model hub](https:/
|
|
31 |
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
32 |
|
33 |
```python
|
34 |
-
from
|
35 |
from PIL import Image
|
36 |
import requests
|
37 |
|
38 |
-
|
|
|
|
|
39 |
model = ORTModelForSemanticSegmentation.from_pretrained("optimum/segformer-b0-finetuned-ade-512-512")
|
40 |
|
41 |
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
42 |
image = Image.open(requests.get(url, stream=True).raw)
|
43 |
|
44 |
-
inputs =
|
45 |
outputs = model(**inputs)
|
46 |
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
|
47 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
For more code examples, we refer to the [Optimum documentation](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/models).
|
50 |
|
|
|
31 |
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
|
32 |
|
33 |
```python
|
34 |
+
from transformers import SegformerImageProcessor
|
35 |
from PIL import Image
|
36 |
import requests
|
37 |
|
38 |
+
from optimum.onnxruntime import ORTModelForSemanticSegmentation
|
39 |
+
|
40 |
+
image_processor = SegformerImageProcessor.from_pretrained("optimum/segformer-b0-finetuned-ade-512-512")
|
41 |
model = ORTModelForSemanticSegmentation.from_pretrained("optimum/segformer-b0-finetuned-ade-512-512")
|
42 |
|
43 |
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
44 |
image = Image.open(requests.get(url, stream=True).raw)
|
45 |
|
46 |
+
inputs = image_processor(images=image, return_tensors="pt").to(device)
|
47 |
outputs = model(**inputs)
|
48 |
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
|
49 |
```
|
50 |
+
If you use pipeline:
|
51 |
+
|
52 |
+
```python
|
53 |
+
from transformers import SegformerImageProcessor, pipeline
|
54 |
+
from optimum.onnxruntime import ORTModelForSemanticSegmentation
|
55 |
+
|
56 |
+
image_processor = SegformerImageProcessor.from_pretrained("optimum/segformer-b0-finetuned-ade-512-512")
|
57 |
+
model = ORTModelForSemanticSegmentation.from_pretrained("optimum/segformer-b0-finetuned-ade-512-512")
|
58 |
+
|
59 |
+
pipe = pipeline("image-segmentation", model=model, feature_extractor=image_processor)
|
60 |
+
pred = pipe(url)
|
61 |
+
```
|
62 |
|
63 |
For more code examples, we refer to the [Optimum documentation](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/models).
|
64 |
|