Token Classification
Transformers
Safetensors
bert
Inference Endpoints
File size: 11,923 Bytes
ece567b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b07e637
 
 
 
 
 
 
 
 
 
 
 
ece567b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b07e637
ece567b
 
b07e637
 
 
 
 
 
 
 
ece567b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
---
language: 
- multilingual
- af
- sq
- ar
- an
- hy
- ast
- az
- ba
- eu
- bar
- be
- bn
- inc
- bs
- br
- bg
- my
- ca
- ceb
- ce
- zh
- cv
- hr
- cs
- da
- nl
- en
- et
- fi
- fr
- gl
- ka
- de
- el
- gu
- ht
- he
- hi
- hu
- is
- io
- id
- ga
- it
- ja
- jv
- kn
- kk
- ky
- ko
- la
- lv
- lt
- roa
- nds
- lm
- mk
- mg
- ms
- ml
- mr
- mn
- min
- ne
- new
- nb
- nn
- oc
- fa
- pms
- pl
- pt
- pa
- ro
- ru
- sco
- sr
- hr
- scn
- sk
- sl
- aze
- es
- su
- sw
- sv
- tl
- tg
- th
- ta
- tt
- te
- tr
- uk
- ud
- uz
- vi
- vo
- war
- cy
- fry
- pnb
- yo
license: apache-2.0
datasets:
- wikipedia
examples:
widget:
- text: "মারভিন দি মারসিয়ান"
  example_title: "Sentence_1"
- text: "লিওনার্দো দা ভিঞ্চি"
  example_title: "Sentence_2"
- text: "বসনিয়া ও হার্জেগোভিনা"
  example_title: "Sentence_3"
- text: "সাউথ ইস্ট ইউনিভার্সিটি"
  example_title: "Sentence_4"
- text: "মানিক বন্দ্যোপাধ্যায় লেখক"
  example_title: "Sentence_5"
---

# BERT multilingual base model (cased)

Pretrained model on the top 104 languages with the largest Wikipedia using a masked language modeling (MLM) objective.
It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in
[this repository](https://github.com/google-research/bert). This model is case sensitive: it makes a difference
between english and English.

Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by
the Hugging Face team.

## Model description

BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it
was pretrained with two objectives:

- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run
  the entire masked sentence through the model and has to predict the masked words. This is different from traditional
  recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like
  GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the
  sentence.
- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes
  they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to
  predict if the two sentences were following each other or not.

This way, the model learns an inner representation of the languages in the training set that can then be used to
extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a
standard classifier using the features produced by the BERT model as inputs.

## Intended uses & limitations

You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to
be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for
fine-tuned versions on a task that interests you.

Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.

### How to use

You can use this model directly with a pipeline for named entity recognition:

```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("orgcatorg/bert-base-multilingual-cased-ner")
model = AutoModelForTokenClassification.from_pretrained("orgcatorg/bert-base-multilingual-cased-ner")
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "মারভিন দি মারসিয়ান"
ner_results = nlp(example)
ner_results
```

## Training data

The BERT model was pretrained on the 104 languages with the largest Wikipedias. You can find the complete list
[here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).

## Training procedure

### Preprocessing

The texts are lowercased and tokenized using WordPiece and a shared vocabulary size of 110,000. The languages with a
larger Wikipedia are under-sampled and the ones with lower resources are oversampled. For languages like Chinese,
Japanese Kanji and Korean Hanja that don't have space, a CJK Unicode block is added around every character. 

The inputs of the model are then of the form:

```
[CLS] Sentence A [SEP] Sentence B [SEP]
```

With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in
the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a
consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two
"sentences" has a combined length of less than 512 tokens.

The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `[MASK]`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.


### BibTeX entry and citation info

```bibtex
@article{DBLP:journals/corr/abs-1810-04805,
  author    = {Jacob Devlin and
               Ming{-}Wei Chang and
               Kenton Lee and
               Kristina Toutanova},
  title     = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language
               Understanding},
  journal   = {CoRR},
  volume    = {abs/1810.04805},
  year      = {2018},
  url       = {http://arxiv.org/abs/1810.04805},
  archivePrefix = {arXiv},
  eprint    = {1810.04805},
  timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
{}
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->



- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]