File size: 19,579 Bytes
7cdf421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# <img src="code/nextgpt.png" style="width: 5%"> NExT-GPT: Any-to-Any Multimodal LLM
[Shengqiong Wu](https://chocowu.github.io/), [Hao Fei](http://haofei.vip/)*, [Leigang Qu](#), [Wei Ji](https://jiwei0523.github.io/), and [Tat-Seng Chua](https://www.chuatatseng.com/).
(*Correspondence )

**[NExT++](https://www.nextcenter.org/), School of Computing, National University of Singapore**

-----

<a href='https://next-gpt.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
<a href='#'><img src='https://img.shields.io/badge/Demo-Page-purple'></a> 
<a href='https://arxiv.org/pdf/2309.05519'><img src='https://img.shields.io/badge/Paper-PDF-orange'></a> 
![License](https://img.shields.io/badge/License-BSD-blue.svg)
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://www.youtube.com/watch?v=aqw2SCWeWD0)


This repository hosts the code, data and model weight of **NExT-GPT**, the first end-to-end MM-LLM that perceives input and generates output in arbitrary combinations (any-to-any) of text, image, video, and audio and beyond.



-----------

## πŸŽ‰ News 

- [x] [2023.09.15] πŸš€πŸš€ Release the code of NExT-GPT in version `7b_tiva_v0`.
- [x] [2023.09.27] πŸ”¨πŸ§© Added modality-blended batch sampler .
- [x] [2023.10.01] πŸ“’πŸ“’ Release the T2M instruction dataset.
- [x] [2023.10.04] πŸ‘πŸ‘ Release the checkpoint of NExT-GPT in version [7b_tiva_v0](https://huggingface.co/ChocoWu/nextgpt_7b_tiva_v0) .
- [x] [2023.10.15] πŸ”¨πŸš€ Update of NExT-GPT in version [7b_tiva_v0](https://huggingface.co/ChocoWu/nextgpt_7b_tiva_v0) .


## πŸ‘‰ TODO 
- [ ] Release MosIT data.
- [ ] Updating NExT-GPT in more types&sizes of LLMs.
- [ ] Empowering NExT-GPT with more modalities of inputs&outputs.
- [ ] ...



-----------

## Example Demos
Here we showcase examples generated from NExT-GPT.
For more examples, kindly visit the [webpage](https://next-gpt.github.io/), or the online live [demo](https://acc414b22d6839d28f.gradio.live). 


https://github.com/NExT-GPT/NExT-GPT/assets/18722770/0c2b3d88-a533-4899-ab44-65580fe54538


https://github.com/NExT-GPT/NExT-GPT/assets/18722770/eb1319a6-38aa-4546-a96e-163207e7de93


https://github.com/NExT-GPT/NExT-GPT/assets/18722770/36bec0ad-9bad-4bcf-bc37-92b028f1bc6a



<span id='introduction'/>

## Brief Introduction 


NExt-GPT is built on top of existing pre-trained LLM, multimodal encoder and SoTA diffusion models, with sufficient end-to-end instruction tuning.

<p align="center" width="100%">
<a target="_blank"><img src="figures/framework.png" alt="Video-LLaMA" style="width: 90%; min-width: 200px; display: block; margin: auto;"></a>
</p>

- **Multimodal Encoding Stage.** Leveraging established encoders to encode inputs in various modalities, where these representations are projected into language-like representations comprehensible to the LLM through a projection layer.
- **LLM Understanding and Reasoning Stage.** Harnessing an existing open-sourced LLM as the core to process input information for semantic understanding and reasoning. The LLM not only directly generates text tokens but also produces unique β€œmodality signal” tokens that serve as instructions to dictate the decoding layers whether & what modal content to output correspondingly.
- **Multimodal Generation Stage.** Receiving the multimodal signals with specific instructions from LLM (if any), the Transformer-based output projection layers map the signal token representations into the ones that are understandable to following multimodal decoders.


For more technical details, kindly refer to the [paper](https://arxiv.org/pdf/2309.05519.pdf). 


-----------


<span id='Usage'/>

## Getting Started



<span id='all_catelogue'/>

### Table of Contents:
* <a href='#Code Structure'>1. Code Structure</a>
* <a href='#Environment Preparation'>2. Environment Preparation </a>
* <a href='#Training on Your Own'>3. Training/Adapting NExt-GPT on Your Own</a>
  * <a href='#Prepare Pre-trained Checkpoint'>3.1. Preparing Pre-trained Checkpoint</a>
  * <a href='#Prepare Dataset'>3.2. Preparing Dataset </a>
  * <a href='#Precompute Embeddings'>3.3. Precomputing Embeddings</a>
  * <a href='#Train NExT-GPT'>3.4. Training NExT-GPT</a>
* <a href='#Run NExT-GPT System'>4. Running NExT-GPT System</a>
  * <a href='#Prepare checkpoints'>4.1. Preparing checkpoints</a>
  * <a href='#Deploy Demo System'>4.2. Deploying Demo System</a>

****





<span id='Code Structure'/>

### 1. Code Structure 

```
β”œβ”€β”€ figures
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ T-X_pair_data  
β”‚   β”‚   β”œβ”€β”€ audiocap                      # text-autio pairs data
β”‚   β”‚   β”‚   β”œβ”€β”€ audios                    # audio files
β”‚   β”‚   β”‚   └── audiocap.json             # the audio captions
β”‚   β”‚   β”œβ”€β”€ cc3m                          # text-image paris data
β”‚   β”‚   β”‚   β”œβ”€β”€ images                    # image files
β”‚   β”‚   β”‚   └── cc3m.json                 # the image captions
β”‚   β”‚   └── webvid                        # text-video pairs data
β”‚   β”‚   β”‚   β”œβ”€β”€ videos                    # video files
β”‚   β”‚   β”‚   └── webvid.json               # the video captions
β”‚   β”œβ”€β”€ IT_data                           # instruction data
β”‚   β”‚   β”œβ”€β”€ T+X-T_data                    # text+[image/audio/video] to text instruction data
β”‚   β”‚   β”‚   β”œβ”€β”€ alpaca                    # textual instruction data
β”‚   β”‚   β”‚   β”œβ”€β”€ llava                     # visual instruction data
β”‚   β”‚   β”œβ”€β”€ T-T+X                         # synthesized text to text+[image/audio/video] instruction data
β”‚   β”‚   └── MosIT                         # Modality-switching Instruction Tuning instruction data
β”œβ”€β”€ code
β”‚   β”œβ”€β”€ config
β”‚   β”‚   β”œβ”€β”€ base.yaml                     # the model configuration 
β”‚   β”‚   β”œβ”€β”€ stage_1.yaml                  # enc-side alignment training configuration
β”‚   β”‚   β”œβ”€β”€ stage_2.yaml                  # dec-side alignment training configuration
β”‚   β”‚   └── stage_3.yaml                  # instruction-tuning configuration
β”‚   β”œβ”€β”€ dsconfig
β”‚   β”‚   β”œβ”€β”€ stage_1.json                  # deepspeed configuration for enc-side alignment training
β”‚   β”‚   β”œβ”€β”€ stage_2.json                  # deepspeed configuration for dec-side alignment training
β”‚   β”‚   └── stage_3.json                  # deepspeed configuration for instruction-tuning training
β”‚   β”œβ”€β”€ datast
β”‚   β”‚   β”œβ”€β”€ base_dataset.py
β”‚   β”‚   β”œβ”€β”€ catalog.py                    # the catalog information of the dataset
β”‚   β”‚   β”œβ”€β”€ cc3m_datast.py                # process and load text-image pair dataset
β”‚   β”‚   β”œβ”€β”€ audiocap_datast.py            # process and load text-audio pair dataset
β”‚   β”‚   β”œβ”€β”€ webvid_dataset.py             # process and load text-video pair dataset
β”‚   β”‚   β”œβ”€β”€ T+X-T_instruction_dataset.py  # process and load text+x-to-text instruction dataset
β”‚   β”‚   β”œβ”€β”€ T-T+X_instruction_dataset.py  # process and load text-to-text+x instruction dataset
β”‚   β”‚   └── concat_dataset.py             # process and load multiple dataset
β”‚   β”œβ”€β”€ model                     
β”‚   β”‚   β”œβ”€β”€ ImageBind                     # the code from ImageBind Model
β”‚   β”‚   β”œβ”€β”€ common
β”‚   β”‚   β”œβ”€β”€ anyToImageVideoAudio.py       # the main model file
β”‚   β”‚   β”œβ”€β”€ agent.py
β”‚   β”‚   β”œβ”€β”€ modeling_llama.py
β”‚   β”‚   β”œβ”€β”€ custom_ad.py                  # the audio diffusion 
β”‚   β”‚   β”œβ”€β”€ custom_sd.py                  # the image diffusion
β”‚   β”‚   β”œβ”€β”€ custom_vd.py                  # the video diffusion
β”‚   β”‚   β”œβ”€β”€ layers.py                     # the output projection layers
β”‚   β”‚   └── ...  
β”‚   β”œβ”€β”€ scripts
β”‚   β”‚   β”œβ”€β”€ train.sh                      # training NExT-GPT script
β”‚   β”‚   └── app.sh                        # deploying demo script
β”‚   β”œβ”€β”€ header.py
β”‚   β”œβ”€β”€ process_embeddings.py             # precompute the captions embeddings
β”‚   β”œβ”€β”€ train.py                          # training
β”‚   β”œβ”€β”€ inference.py                      # inference
β”‚   β”œβ”€β”€ demo_app.py                       # deploy Gradio demonstration 
β”‚   └── ...
β”œβ”€β”€ ckpt                           
β”‚   β”œβ”€β”€ delta_ckpt                        # tunable NExT-GPT params
β”‚   β”‚   β”œβ”€β”€ nextgpt         
β”‚   β”‚   β”‚   β”œβ”€β”€ 7b_tiva_v0                # the directory to save the log file
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ log                   # the logs
β”‚   └── ...       
β”‚   β”œβ”€β”€ pretrained_ckpt                   # frozen params of pretrained modules
β”‚   β”‚   β”œβ”€β”€ imagebind_ckpt
β”‚   β”‚   β”‚   β”œβ”€β”€huge                       # version
β”‚   β”‚   β”‚   β”‚   └──imagebind_huge.pth
β”‚   β”‚   β”œβ”€β”€ vicuna_ckpt
β”‚   β”‚   β”‚   β”œβ”€β”€ 7b_v0                     # version
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ config.json
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ pytorch_model-00001-of-00002.bin
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ tokenizer.model
β”‚   β”‚   β”‚   β”‚   └── ...
β”œβ”€β”€ LICENCE.md
β”œβ”€β”€ README.md
└── requirements.txt
```


<span id='Environment Preparation'/>


### 2. Environment Preparation  <a href='#all_catelogue'>[Back to Top]</a>
Please first clone the repo and install the required environment, which can be done by running the following commands:
```
conda env create -n nextgpt python=3.8

conda activate nextgpt

# CUDA 11.6
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia

git clone https://github.com/NExT-GPT/NExT-GPT.git
cd NExT-GPT

pip install -r requirements.txt
```

<span id='Training on Your Own'/>

### 3. Training/Adapting NExt-GPT on Your Own 

####



<span id='Prepare Pre-trained Checkpoint'/>

#### 3.1. Preparing Pre-trained Checkpoint  <a href='#all_catelogue'>[Back to Top]</a>
NExT-GPT is trained based on following excellent existing models.
Please follow the instructions to prepare the checkpoints.

- `ImageBind`
is the unified image/video/audio encoder. The pre-trained checkpoint can be downloaded from [here](https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth) with version `huge`. Afterward, put the `imagebind_huge.pth` file at [[./ckpt/pretrained_ckpt/imagebind_ckpt/huge]](ckpt/pretrained_ckpt/imagebind_ckpt/). 
- `Vicuna`:
first prepare the LLaMA by following the instructions [[here]](ckpt/pretrained_ckpt/prepare_vicuna.md). Then put the pre-trained model at [[./ckpt/pretrained_ckpt/vicuna_ckpt/]](ckpt/pretrained_ckpt/vicuna_ckpt/). 
- `Image Diffusion`
is used to generate images. NExT-GPT uses [Stable Diffusion](https://huggingface.co/runwayml/stable-diffusion-v1-5) with version `
v1-5`. (_will be automatically downloaded_)
- `Audio Diffusion`
for producing audio content. NExT-GPT employs [AudioLDM](https://github.com/haoheliu/AudioLDM) with version `l-full`. (_will be automatically downloaded_)
- `Video Diffusion`
for the video generation. We employ [ZeroScope](https://huggingface.co/cerspense/zeroscope_v2_576w) with version `v2_576w`. (_will be automatically downloaded_)



<span id='Prepare Dataset'/>

#### 3.2. Preparing Dataset  <a href='#all_catelogue'>[Back to Top]</a>
Please download the following datasets used for model training:

A) T-X pairs data
  - `CC3M` of ***text-image*** pairs, please follow this instruction [[here]](./data/T-X_pair_data/cc3m/prepare.md). Then put the data at [[./data/T-X_pair_data/cc3m]](./data/T-X_pair_data/cc3m).
  - `WebVid` of ***text-video*** pairs, see the [[instruction]](./data/T-X_pair_data/webvid/prepare.md). The file should be saved at [[./data/T-X_pair_data/webvid]](./data/T-X_pair_data/webvid).
  - `AudioCap` of ***text-audio*** pairs, see the [[instruction]](./data/T-X_pair_data/audiocap/prepare.md). Save the data in [[./data/T-X_pair_data/audiocap]](./data/T-X_pair_data/audiocap).

B) Instruction data
  - T+X-T
    - `LLaVA` of the ***visual instruction data***, download it from [here](https://github.com/haotian-liu/LLaVA/blob/main/docs/Data.md), and then put it at [[./data/IT_data/T+X-T_data/llava]](./data/IT_data/T+X-T_data/llava/).
    - `Alpaca` of the ***textual instruction data***, download it from [here](https://github.com/tatsu-lab/stanford_alpaca), and then put it at [[./data/IT_data/T+X-T_data/alpaca/]](data/IT_data/T+X-T_data/alpaca/).
    - `VideoChat`, download the ***video instruction data*** [here](https://github.com/OpenGVLab/InternVideo/tree/main/Data/instruction_data), and then put it at [[./data/IT_data/T+X-T_data/videochat/]](data/IT_data/T+X-T_data/videochat/).
    
    Side note:After downloading dataset, please run `preprocess_dataset.py` to preprocess the dataset into a unified format.
  - T-X+T (T2M)
    - The `T-X+T` instruction datasets (T2M) are saved at [[./data/IT_data/T-T+X_data]](./data/IT_data/T-T+X_data).
   
  - MosIT
    - Download the file from [here](), put them in [[./data/IT_data/MosIT_data/]](./data/IT_data/MosIT_data/). (_We are in the process of finalizing the data and handling the copyright issue. Will release later._) 


<span id='Precompute Embeddings'/>

#### 3.3. Precomputing Embeddings <a href='#all_catelogue'>[Back to Top]</a>
In decoding-side alignment training, we minimize the distance between the representation of signal tokens and captions. 
To save costs of time and memory, we precompute the text embeddings for image, audio and video captions using the text encoder within the respective diffusion models.  

Please run this command before the following training of NExT-GPT, where the produced `embedding` file will be saved at [[./data/embed]](./data/embed).
```angular2html
cd ./code/
python process_embeddings.py ../data/T-X_pair_data/cc3m/cc3m.json image ../data/embed/ runwayml/stable-diffusion-v1-5
```

Note of arguments:
- args[1]: path of caption file;
- args[2]: modality, which can be `image`, `video`, and `audio`;
- args[3]: saving path of embedding file;
- args[4]: corresponding pre-trained diffusion model name.



<span id='Train NExT-GPT'/>

#### 3.4. Training NExT-GPT  <a href='#all_catelogue'>[Back to Top]</a>

First of all, please refer to the base configuration file [[./code/config/base.yaml]](./code/config/base.yaml) for the basic system setting of overall modules.

Then, the training of NExT-GPT starts with this script:
```angular2html
cd ./code
bash scripts/train.sh
```
Specifying the command:
```angular2html
deepspeed --include localhost:0 --master_addr 127.0.0.1 --master_port 28459 train.py \
    --model nextgpt \
    --stage 1\
    --save_path  ../ckpt/delta_ckpt/nextgpt/7b_tiva_v0/\
    --log_path ../ckpt/delta_ckpt/nextgpt/7b_tiva_v0/log/
```
where the key arguments are:
- `--include`: `localhost:0` indicating the GPT cuda number `0` of deepspeed.
- `--stage`: training stage.
- `--save_path`: the directory which saves the trained delta weights. This directory will be automatically created.
- `--log_path`: the directory which saves the log file.






The whole NExT-GPT training involves 3 steps:

- **Step-1**: Encoding-side LLM-centric Multimodal Alignment. This stage trains the ***input projection layer*** while freezing the ImageBind, LLM, output projection layer.
  
  Just run the above `train.sh` script by setting: `--stage 1`
  
  Also refer to the running config file [[./code/config/stage_1.yaml]](./code/config/stage_1.yaml) and deepspeed config file [[./code/dsconfig/stage_1.yaml]](./code/dsconfig/stage_1.yaml) for more step-wise configurations.

  Note that the dataset used for training in this step is included `dataset_name_list` and the dataset name must precisely match the definition in [[./code/dataset/catalog.py]](./code/dataset/catalog.py)  



- **Step-2**: Decoding-side Instruction-following Alignment. This stage trains the ***output projection layers*** while freezing the ImageBind, LLM, input projection layers.

  Just run the above `train.sh` script by setting: `--stage 2`

  Also refer to the running config file [[./code/config/stage_2.yaml]](./code/config/stage_2.yaml) and deepspeed config file [[./code/dsconfig/stage_2.yaml]](./code/dsconfig/stage_2.yaml) for more step-wise configurations.





- **Step-3**: Instruction Tuning. This stage instruction-tune 1) the ***LLM*** via LoRA, 2) ***input projection layer*** and 3) ***output projection layer*** on the instruction dataset.

  Just run the above `train.sh` script by setting: `--stage 3`

  Also refer to the running config file [[./code/config/stage_3.yaml]](./code/config/stage_3.yaml) and deepspeed config file [[./code/dsconfig/stage_3.yaml]](./code/dsconfig/stage_3.yaml) for more step-wise configurations.




<span id='Run NExT-GPT System'/>

## 4. Running NExT-GPT System <a href='#all_catelogue'>[Back to Top]</a>


<span id='Prepare checkpoints'/>


#### 4.1. Preparing Checkpoints

First, loading the pre-trained NExT-GPT system.
- **Step-1**: load `Frozen parameters`. Please refer to <a href='#Prepare Pre-trained Checkpoint'>3.1 Preparing Pre-trained Checkpoint</a>.

- **Step-2**: load `Tunable parameters`. Please put the NExT-GPT system at [[./ckpt/delta_ckpt/nextgpt/7b_tiva_v0]](./ckpt/delta_ckpt/nextgpt/7b_tiva_v0). You may either 1) use the params trained yourselves, or 2) download our checkpoints from [Huggingface](https://huggingface.co/ChocoWu/nextgpt_7b_tiva_v0). 


<span id='Deploy Demo System'/>


#### 4.2. Deploying Gradio Demo
Upon completion of the checkpoint loading, you can run the demo locally via:
```angular2html
cd ./code
bash scripts/app.sh
```
Specifying the key arguments as:
- `--nextgpt_ckpt_path`: the path of pre-trained NExT-GPT params.

---------


## Contact

For any questions or feedback, feel free to contact [Shengqiong Wu](mailto:swu@u.nus.edu) and [Hao Fei](mailto:haofei37@nus.edu.sg).


## Citation

If you find NextGPT useful in your research or applications, please kindly cite:
```
@articles{wu2023nextgpt,
  title={NExT-GPT: Any-to-Any Multimodal LLM},
  author={Shengqiong Wu and Hao Fei and Leigang Qu and Wei Ji and Tat-Seng Chua},
  journal = {CoRR},
  volume = {abs/2309.05519},
  year={2023}
}
```





## Acknowledgements
You may refer to related work that serves as foundations for our framework and code repository, 
[Vicuna](https://github.com/lm-sys/FastChat), 
[ImageBind](https://github.com/facebookresearch/ImageBind), 
[Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/text2img), 
[AudioLDM](https://github.com/haoheliu/AudioLDM), and
[Zeroscope](https://huggingface.co/cerspense/zeroscope_v2_576w).
We also partially draw inspirations from 
[PandaGPT](https://github.com/yxuansu/PandaGPT), 
[VPGTrans](https://vpgtrans.github.io/), 
[GILL](https://github.com/kohjingyu/gill/), 
[CoDi](https://codi-gen.github.io/),
[Video-LLaMA](https://github.com/DAMO-NLP-SG/Video-LLaMA),
and [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4).
Thanks for their wonderful works.




## License Notices
This repository is under [BSD 3-Clause License](LICENSE.txt).
NExT-GPT is a research project intended for non-commercial use only. 
One must NOT use the code of NExT-GPT for any illegal, harmful, violent, racist, or sexual purposes. 
One is strictly prohibited from engaging in any activity that will potentially violate these guidelines.
Any potential commercial use of this code should be approved by the authors.