---
base_model: sentence-transformers/distilbert-base-nli-mean-tokens
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2400
- loss:TripletLoss
- loss:MultipleNegativesRankingLoss
- loss:CoSENTLoss
widget:
- source_sentence: Flislegging av hall
sentences:
- 'query: tapetsering av rom med grunnflate 4x4.5 meter minus tre dører'
- 'query: fliser i hall'
- 'query: fornye markiseduk'
- source_sentence: Betongskjæring av rømningsvindu
sentences:
- Installere ventilasjonssystem
- Installere nytt vindu i trevegg
- Skjære ut rømningsvindu i betongvegg
- source_sentence: Ny garasje leddport
sentences:
- Installere garasjeport
- Bygge ny garasje
- Legge nytt tak
- source_sentence: Legge varmefolie i gang og stue.
sentences:
- Strø grusveier med salt
- Legge varmekabler
- Installere gulvvarme
- source_sentence: Oppgradere kjeller til boareale
sentences:
- Oppussing av kjeller for boligformål
- elektriker på bolig på 120kvm
- Installere dusjkabinett
model-index:
- name: SentenceTransformer based on sentence-transformers/distilbert-base-nli-mean-tokens
results:
- task:
type: triplet
name: Triplet
dataset:
name: test triplet evaluation
type: test-triplet-evaluation
metrics:
- type: cosine_accuracy
value: 0.8111346018322763
name: Cosine Accuracy
- type: dot_accuracy
value: 0.19873150105708245
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.8146582100070472
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.8083157152924595
name: Euclidean Accuracy
- type: max_accuracy
value: 0.8146582100070472
name: Max Accuracy
---
# SentenceTransformer based on sentence-transformers/distilbert-base-nli-mean-tokens
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/distilbert-base-nli-mean-tokens](https://huggingface.co/sentence-transformers/distilbert-base-nli-mean-tokens). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/distilbert-base-nli-mean-tokens](https://huggingface.co/sentence-transformers/distilbert-base-nli-mean-tokens)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ostoveland/test12")
# Run inference
sentences = [
'Oppgradere kjeller til boareale',
'Oppussing av kjeller for boligformål',
'Installere dusjkabinett',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Triplet
* Dataset: `test-triplet-evaluation`
* Evaluated with [TripletEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.8111 |
| dot_accuracy | 0.1987 |
| manhattan_accuracy | 0.8147 |
| euclidean_accuracy | 0.8083 |
| **max_accuracy** | **0.8147** |
## Training Details
### Training Datasets
#### Unnamed Dataset
* Size: 800 training samples
* Columns: sentence_0
, sentence_1
, and sentence_2
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
Oppussing av stue
| Renovere stue
| Male stue
|
| Sameie søker vaktmestertjenester
| Trenger vaktmester til sameie
| Renholdstjenester for sameie
|
| Sprenge og klargjøre til garasje
| Grave ut til garasje
| Bygge garasje
|
* Loss: [TripletLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
```json
{
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
"triplet_margin": 5
}
```
#### Unnamed Dataset
* Size: 800 training samples
* Columns: sentence_0
and sentence_1
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | Helsparkle rom med totale veggflater på ca 20 m2
| query: helsparkling av rom med 20 m2 veggflater
|
| Reparere skifer tak og tak vindu
| query: fikse takvindu og skifertak
|
| Pigge opp flisgulv, fjerne gips vegger og gipstak - 11 kvm
| query: fjerne flisgulv, gipsvegger og gipstak på 11 kvm
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### Unnamed Dataset
* Size: 800 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
| type | string | string | float |
| details | Legging av våtromsbelegg
| Renovering av bad
| 0.65
|
| overvåkingskamera 3stk
| installasjon av 3 overvåkingskameraer
| 0.95
|
| Bytte lamper i portrom
| Male portrom
| 0.15
|
* Loss: [CoSENTLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 1
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters