File size: 7,802 Bytes
ff8e6c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from torch import nn
import torch
from functools import reduce
from operator import __add__
import torch.nn.functional as F
from collections import OrderedDict
from typing import Callable, List
from torch import Tensor


class EffNet(nn.Module):
    # lightly retouched version of John's EffNet to add clean support for multiple output
    # layer designs as well as single-lead inputs
    def __init__(
        self,
        num_extra_inputs: int = 0,
        output_neurons: int = 1,
        channels: List[int] = (32, 16, 24, 40, 80, 112, 192, 320, 1280), 
        depth: List[int] = (1, 2, 2, 3, 3, 3, 3),
        dilation: int = 2,
        stride: int = 8,
        expansion: int = 6,
        embedding_hook: bool = False,
        input_channels: int = 1, 
        verbose: bool = False,
        embedding_shift: bool = False,
    ):
        super().__init__()

        self.input_channels = input_channels
        self.channels = channels
        self.output_nerons = output_neurons

        # backwards compatibility change to prevent the addition of the output_neurons param
        # from breaking people's existing EffNet initializations
        if len(self.channels) == 10:
            self.output_nerons = self.channels[9]
            print(
                "DEPRECATION WARNING: instead of controlling the number of output neurons by changing the 10th item in the channels parameter, use the new output_neurons parameter instead."
            )

        self.depth = depth
        self.expansion = expansion
        self.stride = stride
        self.dilation = dilation
        self.embedding_hook = embedding_hook
        self.embedding_shift = embedding_shift

        if verbose:
            print("\nEffNet Parameters:")
            print(f"{self.input_channels=}")
            print(f"{self.channels=}")
            print(f"{self.output_nerons=}")
            print(f"{self.depth=}")
            print(f"{self.expansion=}")
            print(f"{self.stride=}")
            print(f"{self.dilation=}")
            print(f"{self.embedding_hook=}")
            print("\n")

        self.stage1 = nn.Conv1d(
            self.input_channels,
            self.channels[0],
            kernel_size=3,
            stride=stride,
            padding=1,
            dilation=dilation,
        )  # 1 conv

        self.b0 = nn.BatchNorm1d(self.channels[0])

        self.stage2 = MBConv(
            self.channels[0], self.channels[1], self.expansion, self.depth[0], stride=2
        )

        self.stage3 = MBConv(
            self.channels[1], self.channels[2], self.expansion, self.depth[1], stride=2
        )

        self.Pool = nn.MaxPool1d(3, stride=1, padding=1)

        self.stage4 = MBConv(
            self.channels[2], self.channels[3], self.expansion, self.depth[2], stride=2
        )

        self.stage5 = MBConv(
            self.channels[3], self.channels[4], self.expansion, self.depth[3], stride=2
        )

        self.stage6 = MBConv(
            self.channels[4], self.channels[5], self.expansion, self.depth[4], stride=2
        )

        self.stage7 = MBConv(
            self.channels[5], self.channels[6], self.expansion, self.depth[5], stride=2
        )

        self.stage8 = MBConv(
            self.channels[6], self.channels[7], self.expansion, self.depth[6], stride=2
        )

        self.stage9 = nn.Conv1d(self.channels[7], self.channels[8], kernel_size=1)
        self.AAP = nn.AdaptiveAvgPool1d(1)
        self.act = nn.ReLU()
        self.drop = nn.Dropout(p=0.3)
        self.num_extra_inputs = num_extra_inputs

        self.fc = nn.Linear(self.channels[5] + num_extra_inputs, self.output_nerons)
        self.fc = nn.Linear(self.channels[8] + num_extra_inputs, self.output_nerons)
        
        
        self.fc.bias.data[0] = 0.275

    def forward(self, x: Tensor) -> Tensor:
        if self.num_extra_inputs > 0:
            x, extra_inputs = x

        x = self.b0(self.stage1(x))
        x = self.stage2(x)
        x = self.stage3(x)
        x = self.Pool(x)
        x = self.stage4(x)
        x = self.stage5(x)
        x = self.stage6(x)
        x = self.Pool(x)
        x = self.stage7(x)
        x = self.stage8(x)
        x = self.stage9(x)
        x = self.act(self.AAP(x)[:, :, 0])
        if self.embedding_hook:
            return x
        
        else:
        
            if self.embedding_shift:
                delta_embedding_array = np.load('/workspace/imin/applewatch_potassium/delta_embedding_poolaverage_5second_to_5second.npy')
                delta_embedding_tensor = torch.tensor(delta_embedding_array, device='cuda')
                x += delta_embedding_tensor

            x = self.drop(x)

            if self.num_extra_inputs > 0:
                x = torch.cat((x, extra_inputs), 1)

            x = self.fc(x)
            return x


class Bottleneck(nn.Module):
    def __init__(
        self,
        in_channel: int,
        out_channel: int,
        expansion: int,
        activation: Callable,
        stride: int = 1,
        padding: int = 1,
    ):
        super().__init__()

        self.stride = stride
        self.conv1 = nn.Conv1d(in_channel, in_channel * expansion, kernel_size=1)
        self.conv2 = nn.Conv1d(
            in_channel * expansion,
            in_channel * expansion,
            kernel_size=3,
            groups=in_channel * expansion,
            padding=padding,
            stride=stride,
        )
        self.conv3 = nn.Conv1d(
            in_channel * expansion, out_channel, kernel_size=1, stride=1
        )
        self.b0 = nn.BatchNorm1d(in_channel * expansion)
        self.b1 = nn.BatchNorm1d(in_channel * expansion)
        self.d = nn.Dropout()
        self.act = activation()

    def forward(self, x: Tensor) -> Tensor:
        if self.stride == 1:
            y = self.act(self.b0(self.conv1(x)))
            y = self.act(self.b1(self.conv2(y)))
            y = self.conv3(y)
            y = self.d(y)
            y = x + y
            return y
        else:
            y = self.act(self.b0(self.conv1(x)))
            y = self.act(self.b1(self.conv2(y)))
            y = self.conv3(y)
            return y


class MBConv(nn.Module):
    def __init__(
        self, in_channel, out_channels, expansion, layers, activation=nn.ReLU6, stride=2
    ):
        super().__init__()

        self.stack = OrderedDict()
        for i in range(0, layers - 1):
            self.stack["s" + str(i)] = Bottleneck(
                in_channel, in_channel, expansion, activation
            )

        self.stack["s" + str(layers + 1)] = Bottleneck(
            in_channel, out_channels, expansion, activation, stride=stride
        )

        self.stack = nn.Sequential(self.stack)

        self.bn = nn.BatchNorm1d(out_channels)

    def forward(self, x: Tensor) -> Tensor:
        x = self.stack(x)
        return self.bn(x)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels * BasicBlock.expansion)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = F.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = F.relu(out)

        return out