ozcangundes commited on
Commit
c057e1c
1 Parent(s): f6fa8f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -17
README.md CHANGED
@@ -24,7 +24,7 @@ model-index:
24
  metrics:
25
  - name: Test WER
26
  type: wer
27
- value: 32.39
28
  ---
29
 
30
  # Wav2Vec2-Large-XLSR-53-Turkish
@@ -51,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
- speech_array, sampling_rate = torchaudio.load(batch["path"])
55
- batch["speech"] = resampler(speech_array).squeeze().numpy()
56
- return batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
@@ -84,39 +84,41 @@ wer = load_metric("wer")
84
 
85
  processor = Wav2Vec2Processor.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish")
86
  model = Wav2Vec2ForCTC.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish")
 
 
87
  model.to("cuda")
88
 
89
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
90
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
91
 
92
  # Preprocessing the datasets.
93
  # We need to read the aduio files as arrays
94
  def speech_file_to_array_fn(batch):
95
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
96
- speech_array, sampling_rate = torchaudio.load(batch["path"])
97
- batch["speech"] = resampler(speech_array).squeeze().numpy()
98
- return batch
99
 
100
  test_dataset = test_dataset.map(speech_file_to_array_fn)
101
 
102
  # Preprocessing the datasets.
103
  # We need to read the aduio files as arrays
104
  def evaluate(batch):
105
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
106
 
107
- with torch.no_grad():
108
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
109
 
110
- pred_ids = torch.argmax(logits, dim=-1)
111
- batch["pred_strings"] = processor.batch_decode(pred_ids)
112
- return batch
113
 
114
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
115
 
116
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
117
  ```
118
 
119
- **Test Result**: 32.39 %
120
 
121
  ## Training
122
 
 
24
  metrics:
25
  - name: Test WER
26
  type: wer
27
+ value: 30.24
28
  ---
29
 
30
  # Wav2Vec2-Large-XLSR-53-Turkish
 
51
  # Preprocessing the datasets.
52
  # We need to read the aduio files as arrays
53
  def speech_file_to_array_fn(batch):
54
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
55
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
56
+ \treturn batch
57
 
58
  test_dataset = test_dataset.map(speech_file_to_array_fn)
59
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
60
 
61
  with torch.no_grad():
62
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
63
 
64
  predicted_ids = torch.argmax(logits, dim=-1)
65
 
 
84
 
85
  processor = Wav2Vec2Processor.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish")
86
  model = Wav2Vec2ForCTC.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish")
87
+
88
+
89
  model.to("cuda")
90
 
91
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\']'
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
99
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
100
+ return batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
+ with torch.no_grad():
110
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
+ pred_ids = torch.argmax(logits, dim=-1)
113
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
114
+ return batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
 
118
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
119
  ```
120
 
121
+ **Test Result**: 30.24 %
122
 
123
  ## Training
124