ozcangundes
commited on
Commit
•
c057e1c
1
Parent(s):
f6fa8f8
Update README.md
Browse files
README.md
CHANGED
@@ -24,7 +24,7 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Test WER
|
26 |
type: wer
|
27 |
-
value:
|
28 |
---
|
29 |
|
30 |
# Wav2Vec2-Large-XLSR-53-Turkish
|
@@ -51,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
51 |
# Preprocessing the datasets.
|
52 |
# We need to read the aduio files as arrays
|
53 |
def speech_file_to_array_fn(batch):
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
-
|
63 |
|
64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
|
@@ -84,39 +84,41 @@ wer = load_metric("wer")
|
|
84 |
|
85 |
processor = Wav2Vec2Processor.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish")
|
86 |
model = Wav2Vec2ForCTC.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish")
|
|
|
|
|
87 |
model.to("cuda")
|
88 |
|
89 |
-
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"
|
90 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
91 |
|
92 |
# Preprocessing the datasets.
|
93 |
# We need to read the aduio files as arrays
|
94 |
def speech_file_to_array_fn(batch):
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
|
100 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
101 |
|
102 |
# Preprocessing the datasets.
|
103 |
# We need to read the aduio files as arrays
|
104 |
def evaluate(batch):
|
105 |
-
|
106 |
|
107 |
-
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
|
114 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
115 |
|
116 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
117 |
```
|
118 |
|
119 |
-
**Test Result**:
|
120 |
|
121 |
## Training
|
122 |
|
|
|
24 |
metrics:
|
25 |
- name: Test WER
|
26 |
type: wer
|
27 |
+
value: 30.24
|
28 |
---
|
29 |
|
30 |
# Wav2Vec2-Large-XLSR-53-Turkish
|
|
|
51 |
# Preprocessing the datasets.
|
52 |
# We need to read the aduio files as arrays
|
53 |
def speech_file_to_array_fn(batch):
|
54 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
55 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
56 |
+
\treturn batch
|
57 |
|
58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
60 |
|
61 |
with torch.no_grad():
|
62 |
+
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
63 |
|
64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
65 |
|
|
|
84 |
|
85 |
processor = Wav2Vec2Processor.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish")
|
86 |
model = Wav2Vec2ForCTC.from_pretrained("ozcangundes/wav2vec2-large-xlsr-53-turkish")
|
87 |
+
|
88 |
+
|
89 |
model.to("cuda")
|
90 |
|
91 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\’\']'
|
92 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
93 |
|
94 |
# Preprocessing the datasets.
|
95 |
# We need to read the aduio files as arrays
|
96 |
def speech_file_to_array_fn(batch):
|
97 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
98 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
99 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
100 |
+
return batch
|
101 |
|
102 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
103 |
|
104 |
# Preprocessing the datasets.
|
105 |
# We need to read the aduio files as arrays
|
106 |
def evaluate(batch):
|
107 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
108 |
|
109 |
+
with torch.no_grad():
|
110 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
111 |
|
112 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
113 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
114 |
+
return batch
|
115 |
|
116 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
117 |
|
118 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
119 |
```
|
120 |
|
121 |
+
**Test Result**: 30.24 %
|
122 |
|
123 |
## Training
|
124 |
|