p1atdev commited on
Commit
fd29fa7
1 Parent(s): 2661ca9

Upload model

Browse files
Files changed (5) hide show
  1. README.md +201 -0
  2. config.json +16 -0
  3. configuration_dart2vec.py +24 -0
  4. model.safetensors +3 -0
  5. modeling_dart2vec.py +86 -0
README.md ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Dart2VecModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_dart2vec.Dart2VecConfig",
7
+ "AutoModel": "modeling_dart2vec.Dart2VecModel"
8
+ },
9
+ "bos_token_id": 0,
10
+ "eos_token_id": 1,
11
+ "hidden_size": 768,
12
+ "pad_token_id": 2,
13
+ "torch_dtype": "float32",
14
+ "transformers_version": "4.38.2",
15
+ "vocab_size": 30643
16
+ }
configuration_dart2vec.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+
3
+
4
+ class Dart2VecConfig(PretrainedConfig):
5
+ """Configuration for Dart2Vec model"""
6
+
7
+ def __init__(
8
+ self,
9
+ vocab_size=9462,
10
+ hidden_size=768,
11
+ pad_token_id=1,
12
+ bos_token_id=0,
13
+ eos_token_id=2,
14
+ **kwargs
15
+ ):
16
+ self.vocab_size = vocab_size
17
+ self.hidden_size = hidden_size
18
+
19
+ super().__init__(
20
+ pad_token_id=pad_token_id,
21
+ bos_token_id=bos_token_id,
22
+ eos_token_id=eos_token_id,
23
+ **kwargs,
24
+ )
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f02b6e918bfb8fb837079f6388ec17cf2c247e2d39f73d7760961fc3e4e98ccb
3
+ size 94135440
modeling_dart2vec.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from typing import Optional
5
+ from dataclasses import dataclass
6
+
7
+ from transformers import PreTrainedModel
8
+ from transformers.utils import ModelOutput
9
+
10
+ from .configuration_dart2vec import Dart2VecConfig
11
+
12
+
13
+ @dataclass
14
+ class Dart2VecModelOutput(ModelOutput):
15
+ hidden_states: torch.Tensor
16
+
17
+
18
+ @dataclass
19
+ class Dart2VecModelForFeatureExtractionOutput(ModelOutput):
20
+ embeddings: torch.Tensor
21
+
22
+
23
+ class Dart2VecEmbeddings(nn.Module):
24
+ def __init__(self, config: Dart2VecConfig):
25
+ super().__init__()
26
+
27
+ self.tag_embeddings = nn.Embedding(
28
+ config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id
29
+ )
30
+
31
+ def forward(
32
+ self,
33
+ input_ids: Optional[torch.LongTensor] = None,
34
+ inputs_embeds: Optional[torch.FloatTensor] = None,
35
+ ):
36
+ if inputs_embeds is not None:
37
+ return inputs_embeds
38
+
39
+ embeddings = self.tag_embeddings(input_ids)
40
+
41
+ return embeddings
42
+
43
+
44
+ class Dart2VecPreTrainedModel(PreTrainedModel):
45
+ """
46
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
47
+ models.
48
+ """
49
+
50
+ config_class = Dart2VecConfig
51
+ base_model_prefix = "dart2vec"
52
+
53
+ def _init_weights(self, module):
54
+ """Initialize the weights"""
55
+ if isinstance(module, nn.Embedding):
56
+ torch.nn.init.kaiming_uniform_(module.weight)
57
+ if module.padding_idx is not None:
58
+ module.weight.data[module.padding_idx].zero_()
59
+ elif isinstance(module, nn.Linear):
60
+ module.weight.data.normal_(mean=0.0, std=0.02)
61
+ if module.bias is not None:
62
+ module.bias.data.zero_()
63
+
64
+
65
+ class Dart2VecModel(Dart2VecPreTrainedModel):
66
+ def __init__(self, config: Dart2VecConfig):
67
+ super().__init__(config)
68
+
69
+ self.config = config
70
+
71
+ self.embeddings = Dart2VecEmbeddings(config)
72
+
73
+ self.post_init()
74
+
75
+ def get_input_embeddings(self):
76
+ return self.embeddings.tag_embeddings
77
+
78
+ def set_input_embeddings(self, value):
79
+ self.embeddings.tag_embeddings = value
80
+
81
+ def forward(
82
+ self, input_ids: torch.Tensor
83
+ ) -> Dart2VecModelForFeatureExtractionOutput:
84
+ embeddings = self.embeddings(input_ids)
85
+
86
+ return Dart2VecModelForFeatureExtractionOutput(embeddings=embeddings)