--- library_name: transformers base_model: allenai/biomed_roberta_base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioMedRoBERTa-finetuned-valid-testing results: [] --- # BioMedRoBERTa-finetuned-valid-testing This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0920 - Precision: 0.8179 - Recall: 0.8236 - F1: 0.8207 - Accuracy: 0.9760 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 417 | 0.1029 | 0.7906 | 0.7974 | 0.7940 | 0.9711 | | 0.256 | 2.0 | 834 | 0.0807 | 0.8322 | 0.8077 | 0.8198 | 0.9772 | | 0.0658 | 3.0 | 1251 | 0.0862 | 0.7913 | 0.8086 | 0.7999 | 0.9712 | | 0.0448 | 4.0 | 1668 | 0.0871 | 0.8132 | 0.8151 | 0.8142 | 0.9768 | | 0.0288 | 5.0 | 2085 | 0.0920 | 0.8179 | 0.8236 | 0.8207 | 0.9760 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1