Training complete
Browse files
README.md
CHANGED
@@ -1,73 +1,72 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
-
|
8 |
-
-
|
9 |
-
-
|
10 |
-
|
11 |
-
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
-
|
47 |
-
-
|
48 |
-
-
|
49 |
-
-
|
50 |
-
-
|
51 |
-
-
|
52 |
-
-
|
53 |
-
-
|
54 |
-
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
-
|
71 |
-
-
|
72 |
-
-
|
73 |
-
- Tokenizers 0.19.1
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: allenai/biomed_roberta_base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: BioMedRoBERTa-full-finetuned-ner-pablo
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# BioMedRoBERTa-full-finetuned-ner-pablo
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0957
|
24 |
+
- Precision: 0.8174
|
25 |
+
- Recall: 0.8204
|
26 |
+
- F1: 0.8189
|
27 |
+
- Accuracy: 0.9769
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0001
|
47 |
+
- train_batch_size: 128
|
48 |
+
- eval_batch_size: 128
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.05
|
53 |
+
- num_epochs: 5
|
54 |
+
- mixed_precision_training: Native AMP
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
60 |
+
| No log | 1.0 | 427 | 0.0818 | 0.8084 | 0.7885 | 0.7983 | 0.9756 |
|
61 |
+
| 0.263 | 2.0 | 854 | 0.0760 | 0.8029 | 0.8081 | 0.8055 | 0.9766 |
|
62 |
+
| 0.0608 | 3.0 | 1281 | 0.0818 | 0.7963 | 0.8199 | 0.8079 | 0.9754 |
|
63 |
+
| 0.046 | 4.0 | 1708 | 0.0904 | 0.8048 | 0.8232 | 0.8139 | 0.9759 |
|
64 |
+
| 0.0327 | 5.0 | 2135 | 0.0957 | 0.8174 | 0.8204 | 0.8189 | 0.9769 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.44.1
|
70 |
+
- Pytorch 2.4.0+cu121
|
71 |
+
- Datasets 2.21.0
|
72 |
+
- Tokenizers 0.19.1
|
|
runs/Aug22_08-42-19_26b01926c00f/events.out.tfevents.1724316140.26b01926c00f.1526.2
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8905bc5ad6b0811bec756d0ea444b2e654f0f6383f6ced9e89df2d486a83fb2
|
3 |
+
size 9292
|