--- library_name: transformers base_model: allenai/biomed_roberta_base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioMedRoBERTa-full-finetuned-ner-pablo results: [] --- # BioMedRoBERTa-full-finetuned-ner-pablo This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1094 - Precision: 0.8151 - Recall: 0.7999 - F1: 0.8074 - Accuracy: 0.9737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3008 | 1.0 | 613 | 0.0937 | 0.8042 | 0.7705 | 0.7870 | 0.9727 | | 0.0799 | 2.0 | 1226 | 0.0873 | 0.8103 | 0.7936 | 0.8019 | 0.9744 | | 0.0649 | 3.0 | 1839 | 0.0888 | 0.8179 | 0.7930 | 0.8053 | 0.9748 | | 0.053 | 4.0 | 2452 | 0.0966 | 0.8082 | 0.7978 | 0.8029 | 0.9732 | | 0.0321 | 5.0 | 3065 | 0.1094 | 0.8151 | 0.7999 | 0.8074 | 0.9737 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1