--- library_name: transformers base_model: allenai/biomed_roberta_base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: BioMedRoBERTa-full-finetuned-ner-pablo results: [] --- # BioMedRoBERTa-full-finetuned-ner-pablo This model is a fine-tuned version of [allenai/biomed_roberta_base](https://huggingface.co/allenai/biomed_roberta_base) on the n2c2 2018 dataset for the paper https://arxiv.org/abs/2409.19467. It achieves the following results on the evaluation set: - Loss: 0.0739 - Precision: 0.8048 - Recall: 0.7953 - F1: 0.8000 - Accuracy: 0.9775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 231 | 0.0877 | 0.7475 | 0.7719 | 0.7595 | 0.9733 | | No log | 2.0 | 462 | 0.0766 | 0.7797 | 0.7900 | 0.7848 | 0.9756 | | 0.2598 | 3.0 | 693 | 0.0730 | 0.8042 | 0.7949 | 0.7995 | 0.9774 | | 0.2598 | 4.0 | 924 | 0.0739 | 0.8048 | 0.7953 | 0.8000 | 0.9775 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1