File size: 1,990 Bytes
93df16d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb58bbf
93df16d
d83a4d1
 
 
 
 
93df16d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cce7bc4
 
 
93df16d
 
 
cce7bc4
d83a4d1
93df16d
 
 
 
cce7bc4
 
d83a4d1
 
 
 
93df16d
 
 
 
 
d83a4d1
93df16d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
library_name: transformers
license: mit
base_model: FacebookAI/roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: RoBERTa-full-finetuned-ner-pablo
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# RoBERTa-full-finetuned-ner-pablo

This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the n2c2 2018 dataset for the paper https://arxiv.org/abs/2409.19467.
It achieves the following results on the evaluation set:
- Loss: 0.0751
- Precision: 0.8017
- Recall: 0.7929
- F1: 0.7973
- Accuracy: 0.9770

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 231  | 0.0920          | 0.7617    | 0.7516 | 0.7566 | 0.9723   |
| No log        | 2.0   | 462  | 0.0769          | 0.7942    | 0.7820 | 0.7881 | 0.9763   |
| 0.2523        | 3.0   | 693  | 0.0736          | 0.8096    | 0.7882 | 0.7988 | 0.9774   |
| 0.2523        | 4.0   | 924  | 0.0751          | 0.8017    | 0.7929 | 0.7973 | 0.9770   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1