Create handler.py
Browse files- handler.py +46 -0
handler.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from ultralytics import YOLO
|
3 |
+
|
4 |
+
class EndpointHandler():
|
5 |
+
def __init__(self, path=""):
|
6 |
+
# Preload all the elements you are going to need at inference.
|
7 |
+
# pseudo:
|
8 |
+
# self.model= load_model(path)
|
9 |
+
yolov8_model_name = 'yolov8_2023-07-19_yolov8m.pt'
|
10 |
+
self.model = YOLO(yolov8_model_name)
|
11 |
+
|
12 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
13 |
+
"""
|
14 |
+
data args:
|
15 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
16 |
+
kwargs
|
17 |
+
Return:
|
18 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
19 |
+
"""
|
20 |
+
# Get the prediction
|
21 |
+
result = self.model(data['inputs'])
|
22 |
+
# Get the original image with channel shifted
|
23 |
+
img = result[0].orig_img[:,:,::-1]
|
24 |
+
H, W, _ = img.shape
|
25 |
+
annotated = img.copy()
|
26 |
+
# Modify crop so that it is square
|
27 |
+
try:
|
28 |
+
x1, y1, x2, y2 = result[0].boxes.xyxy.numpy().astype('int')[0]
|
29 |
+
if result[0].boxes.conf[0].item() < 0.75: # if low in confidence
|
30 |
+
x1, y1, x2, y2 = 0, 0, W, H
|
31 |
+
else:
|
32 |
+
annotated = result[0].plot(labels=False, conf=False)[:,:,::-1]
|
33 |
+
except: # in case there is no detection
|
34 |
+
x1, y1, x2, y2 = 0, 0, W, H
|
35 |
+
|
36 |
+
h, w = y2-y1, x2-x1
|
37 |
+
offset = abs(h-w) // 2
|
38 |
+
if h > w:
|
39 |
+
x1 = max(x1 - offset, 0)
|
40 |
+
x2 = min(x2 + offset, W)
|
41 |
+
else:
|
42 |
+
y1 = max(y1 - offset, 0)
|
43 |
+
y2 = min(y2 + offset, H)
|
44 |
+
new_image = img[y1:y2, x1:x2]
|
45 |
+
# Return the annotated original image with the square cropped
|
46 |
+
return annotated, new_image
|