panda1835 commited on
Commit
14919b5
1 Parent(s): 3132b22

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +46 -0
handler.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+ from ultralytics import YOLO
3
+
4
+ class EndpointHandler():
5
+ def __init__(self, path=""):
6
+ # Preload all the elements you are going to need at inference.
7
+ # pseudo:
8
+ # self.model= load_model(path)
9
+ yolov8_model_name = 'yolov8_2023-07-19_yolov8m.pt'
10
+ self.model = YOLO(yolov8_model_name)
11
+
12
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
13
+ """
14
+ data args:
15
+ inputs (:obj: `str` | `PIL.Image` | `np.array`)
16
+ kwargs
17
+ Return:
18
+ A :obj:`list` | `dict`: will be serialized and returned
19
+ """
20
+ # Get the prediction
21
+ result = self.model(data['inputs'])
22
+ # Get the original image with channel shifted
23
+ img = result[0].orig_img[:,:,::-1]
24
+ H, W, _ = img.shape
25
+ annotated = img.copy()
26
+ # Modify crop so that it is square
27
+ try:
28
+ x1, y1, x2, y2 = result[0].boxes.xyxy.numpy().astype('int')[0]
29
+ if result[0].boxes.conf[0].item() < 0.75: # if low in confidence
30
+ x1, y1, x2, y2 = 0, 0, W, H
31
+ else:
32
+ annotated = result[0].plot(labels=False, conf=False)[:,:,::-1]
33
+ except: # in case there is no detection
34
+ x1, y1, x2, y2 = 0, 0, W, H
35
+
36
+ h, w = y2-y1, x2-x1
37
+ offset = abs(h-w) // 2
38
+ if h > w:
39
+ x1 = max(x1 - offset, 0)
40
+ x2 = min(x2 + offset, W)
41
+ else:
42
+ y1 = max(y1 - offset, 0)
43
+ y2 = min(y2 + offset, H)
44
+ new_image = img[y1:y2, x1:x2]
45
+ # Return the annotated original image with the square cropped
46
+ return annotated, new_image