Papers
arxiv:2303.15387

Generalizable Neural Voxels for Fast Human Radiance Fields

Published on Mar 27, 2023
Authors:
,
,

Abstract

Rendering moving human bodies at free viewpoints only from a monocular video is quite a challenging problem. The information is too sparse to model complicated human body structures and motions from both view and pose dimensions. Neural radiance fields (NeRF) have shown great power in novel view synthesis and have been applied to human body rendering. However, most current NeRF-based methods bear huge costs for both training and rendering, which impedes the wide applications in real-life scenarios. In this paper, we propose a rendering framework that can learn moving human body structures extremely quickly from a monocular video. The framework is built by integrating both neural fields and neural voxels. Especially, a set of generalizable neural voxels are constructed. With pretrained on various human bodies, these general voxels represent a basic skeleton and can provide strong geometric priors. For the fine-tuning process, individual voxels are constructed for learning differential textures, complementary to general voxels. Thus learning a novel body can be further accelerated, taking only a few minutes. Our method shows significantly higher training efficiency compared with previous methods, while maintaining similar rendering quality. The project page is at https://taoranyi.com/gneuvox .

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2303.15387 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2303.15387 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2303.15387 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.