Papers
arxiv:2311.05741

Efficiently Adapting Pretrained Language Models To New Languages

Published on Nov 9, 2023
Authors:
,
,

Abstract

Recent large language models (LLM) exhibit sub-optimal performance on low-resource languages, as the training data of these models is usually dominated by English and other high-resource languages. Furthermore, it is challenging to train models for low-resource languages, especially from scratch, due to a lack of high quality training data. Adapting pretrained LLMs reduces the need for data in the new language while also providing cross lingual transfer capabilities. However, naively adapting to new languages leads to catastrophic forgetting and poor tokenizer efficiency. In this work, we study how to efficiently adapt any existing pretrained LLM to a new language without running into these issues. In particular, we improve the encoding efficiency of the tokenizer by adding new tokens from the target language and study the data mixing recipe to mitigate forgetting. Our experiments on adapting an English LLM to Hungarian and Thai show that our recipe can reach better performance than open source models on the target language, with minimal regressions on English.

Community

Sign up or log in to comment

Models citing this paper 14

Browse 14 models citing this paper

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2311.05741 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2311.05741 in a Space README.md to link it from this page.

Collections including this paper 1