Papers
arxiv:2404.06025

Greedy-DiM: Greedy Algorithms for Unreasonably Effective Face Morphs

Published on Apr 9, 2024

Abstract

Morphing attacks are an emerging threat to state-of-the-art Face Recognition (FR) systems, which aim to create a single image that contains the biometric information of multiple identities. Diffusion Morphs (DiM) are a recently proposed morphing attack that has achieved state-of-the-art performance for representation-based morphing attacks. However, none of the existing research on DiMs have leveraged the iterative nature of DiMs and left the DiM model as a black box, treating it no differently than one would a Generative Adversarial Network (GAN) or Varational AutoEncoder (VAE). We propose a greedy strategy on the iterative sampling process of DiM models which searches for an optimal step guided by an identity-based heuristic function. We compare our proposed algorithm against ten other state-of-the-art morphing algorithms using the open-source SYN-MAD 2022 competition dataset. We find that our proposed algorithm is unreasonably effective, fooling all of the tested FR systems with an MMPMR of 100%, outperforming all other morphing algorithms compared.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2404.06025 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2404.06025 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.