Papers
arxiv:2406.10601

The Devil is in the Details: StyleFeatureEditor for Detail-Rich StyleGAN Inversion and High Quality Image Editing

Published on Jun 15
· Submitted by ai-alanov on Jun 21
#3 Paper of the day
Authors:
,

Abstract

The task of manipulating real image attributes through StyleGAN inversion has been extensively researched. This process involves searching latent variables from a well-trained StyleGAN generator that can synthesize a real image, modifying these latent variables, and then synthesizing an image with the desired edits. A balance must be struck between the quality of the reconstruction and the ability to edit. Earlier studies utilized the low-dimensional W-space for latent search, which facilitated effective editing but struggled with reconstructing intricate details. More recent research has turned to the high-dimensional feature space F, which successfully inverses the input image but loses much of the detail during editing. In this paper, we introduce StyleFeatureEditor -- a novel method that enables editing in both w-latents and F-latents. This technique not only allows for the reconstruction of finer image details but also ensures their preservation during editing. We also present a new training pipeline specifically designed to train our model to accurately edit F-latents. Our method is compared with state-of-the-art encoding approaches, demonstrating that our model excels in terms of reconstruction quality and is capable of editing even challenging out-of-domain examples. Code is available at https://github.com/AIRI-Institute/StyleFeatureEditor.

Community

Paper author Paper submitter
•
edited Jun 22

We propose a novel StyleGAN encoder that allows high quality image editing!

GitHub repository with code and models

image.png

This is really good work, well done to the team!

Sign up or log in to comment

Models citing this paper 1

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2406.10601 in a dataset README.md to link it from this page.

Spaces citing this paper 1

Collections including this paper 9