Towards Self-Improvement of LLMs via MCTS: Leveraging Stepwise Knowledge with Curriculum Preference Learning
Abstract
Monte Carlo Tree Search (MCTS) has recently emerged as a powerful technique for enhancing the reasoning capabilities of LLMs. Techniques such as SFT or DPO have enabled LLMs to distill high-quality behaviors from MCTS, improving their reasoning performance. However, existing distillation methods underutilize the rich trajectory information generated by MCTS, limiting the potential for improvements in LLM reasoning. In this paper, we propose AlphaLLM-CPL, a novel pairwise training framework that enables LLMs to self-improve through MCTS behavior distillation. AlphaLLM-CPL efficiently leverages MCTS trajectories via two key innovations: (1) AlphaLLM-CPL constructs stepwise trajectory pairs from child nodes sharing the same parent in the search tree, providing step-level information for more effective MCTS behavior distillation. (2) AlphaLLM-CPL introduces curriculum preference learning, dynamically adjusting the training sequence of trajectory pairs in each offline training epoch to prioritize critical learning steps and mitigate overfitting. Experimental results on mathematical reasoning tasks demonstrate that AlphaLLM-CPL significantly outperforms previous MCTS behavior distillation methods, substantially boosting the reasoning capabilities of LLMs.
Community
We propose ALPHALLM-CPL, a novel pairwise training framework that enables LLMs to self-improve through MCTS behavior distillation. ALPHALLM-CPL efficiently leverages MCTS trajectories via two key innovations: (1) ALPHALLM-CPL constructs stepwise trajectory pairs from child nodes sharing the same
parent in the search tree, providing step-level information for more effective MCTS behavior distillation. (2) ALPHALLM-CPL introduces curriculum preference learning, dynamically adjusting the training sequence of trajectory pairs in each offline training epoch to prioritize critical learning steps and mitigate overfitting.
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- CPL: Critical Plan Step Learning Boosts LLM Generalization in Reasoning Tasks (2024)
- Building Math Agents with Multi-Turn Iterative Preference Learning (2024)
- CodePMP: Scalable Preference Model Pretraining for Large Language Model Reasoning (2024)
- Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents (2024)
- LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning (2024)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
You can directly ask Librarian Bot for paper recommendations by tagging it in a comment:
@librarian-bot
recommend
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper