--- license: "mit" --- This is a fine-tuned RoBERTa model that takes text (up to a few sentences) and predicts to what extent it contains empathic language. Example classification: ```python import torch import tensorflow as tf from transformers import RobertaTokenizer, RobertaModel from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/bert_empathy") model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/bert_empathy") def roberta(x): encoded_input = tokenizer(x, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = tf.nn.softmax(scores) return scores.numpy()[1] ```