MoritzLaurer
HF staff
upload custom handler and requirements.txt for direct compatibility with HF inference endpoints
2b99d89
verified
from typing import Dict, List, Any | |
from parler_tts import ParlerTTSForConditionalGeneration | |
from transformers import AutoTokenizer | |
import torch | |
class EndpointHandler: | |
def __init__(self, path=""): | |
# load model and processor from path | |
self.tokenizer = AutoTokenizer.from_pretrained(path) | |
self.model = ParlerTTSForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16).to("cuda") | |
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: | |
""" | |
Args: | |
data (:dict:): | |
The payload with the text prompt and generation parameters. | |
""" | |
# process input | |
inputs = data.pop("inputs", data) | |
voice_description = data.pop("voice_description", "data") | |
parameters = data.pop("parameters", None) | |
gen_kwargs = {"min_new_tokens": 10} | |
if parameters is not None: | |
gen_kwargs.update(parameters) | |
# preprocess | |
inputs = self.tokenizer( | |
text=[inputs], | |
padding=True, | |
return_tensors="pt",).to("cuda") | |
voice_description = self.tokenizer( | |
text=[voice_description], | |
padding=True, | |
return_tensors="pt",).to("cuda") | |
# pass inputs with all kwargs in data | |
with torch.autocast("cuda"): | |
outputs = self.model.generate(**voice_description, prompt_input_ids=inputs.input_ids, **gen_kwargs) | |
# postprocess the prediction | |
prediction = outputs[0].cpu().numpy().tolist() | |
return [{"generated_audio": prediction}] |