--- license: llama3.1 language: - en - pa metrics: - chrf base_model: - meta-llama/Meta-Llama-3.1-8B pipeline_tag: translation tags: - text-2-text translation - English2Punjabi --- # 🦙📝 LLAMA-VaaniSetu-EN2PA: English to Punjabi Translation with Large Language Models ### Overview This model, **LLAMA-VaaniSetu-EN2PA**, is a fine-tuned version of the LLaMA 3.1 8B architecture model, designed specifically for **English to Punjabi translation**. The model has been trained using the **Bharat Parallel Corpus Collection (BPCC)**, which contains around **10 million English<>Punjabi pairs**. The BPCC has been made available by [AI4Bharat](https://github.com/AI4Bharat/IndicTrans2). This model aims to bridge the gap in **open-source English to Punjabi translation models**, with potential applications in translating judicial documents, government orders, court judgments, and other documents to cater to Punjabi-speaking masses. ### Model and Data Information - **Training Data**: 10 million English<>Punjabi parallel sentences from [AI4Bharat's Bharat Parallel Corpus Collection (BPCC)](https://github.com/AI4Bharat/IndicTrans2). - **Evaluation Data**: The model has been evaluated on **1503 samples** from the **IN22-Conv dataset**, which is also available via [IndicTrans2](https://github.com/AI4Bharat/IndicTrans2). - **Model Architecture**: Based on **LLaMA 3.1 8B** with BF16 precision. - **Score (chrF++)**: Achieved a **chrF++ score of 28.1** on the IN22-Conv dataset, which is an excellent score for an open-source model. The benchmark chrF++ score for Google Translate is 61.1 (as noted in [this paper](https://arxiv.org/pdf/2305.16307)). This is the **first release** of the model, and future updates aim to improve the chrF++ score for enhanced translation quality. ### GPU Requirements for Inference To perform inference with this model, here are the **minimum GPU requirements**: - **Memory Requirements**: 16-18 GB of VRAM for inference in **BF16 (BFloat16)** precision. - **Recommended GPUs**: - **NVIDIA A100 (20GB)**: Ideal for BF16 precision and efficiently handles large models like LLaMA 8B. - Other GPUs with **at least 16 GB VRAM** may also work, but performance may vary based on memory availability. ## Requirements - Python 3.8.10 or above - Required Python packages: - `transformers` - `torch` - `huggingface_hub` ### Installation Instructions To use this model, ensure you have the following dependencies installed: ```bash pip install torch transformers huggingface_hub ``` ### Model Usage Example Here's an example of how to load and use the **LLAMA-VaaniSetu-EN2PA** model for **English to Punjabi translation**: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer def load_model(): tokenizer = AutoTokenizer.from_pretrained("partex-nv/Llama-3.1-8B-VaaniSetu-EN2PA") model = AutoModelForCausalLM.from_pretrained( "partex-nv/Llama-3.1-8B-VaaniSetu-EN2PA", torch_dtype=torch.bfloat16, device_map="auto", # Automatically moves model to GPU ) return model, tokenizer model, tokenizer = load_model() # Define the function for translation # Define the function for translation which translated from English to Punjabi def translate_to_punjabi(english_text): # Create the prompt translate_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" # Format the prompt formatted_input = translate_prompt.format( "You are given the english text, read it and understand it. After reading translate the english text to Punjabi and provide the output strictly", # Instruction english_text, # Input text to be translated "" # Output - leave blank for generation ) # Tokenize the input inputs = tokenizer([formatted_input], return_tensors="pt").to("cuda") # Generate the translation output output_ids = model.generate(**inputs, max_new_tokens=500) # Decode the output translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) fulloutput = translated_text.split("Response:")[-1].strip() if not fulloutput: fulloutput = "" return fulloutput english_text = """ Delhi is a beautiful place """ punjabi_translation = translate_to_punjabi(english_text) print(punjabi_translation) ``` ### Notes - The translation function is designed to handle **English to Punjabi** translations. You can use this for various applications, such as translating judicial documents, government orders, and other documents into Punjabi. ### Performance and Future Work As this is the **first release** of the **LLAMA-VaaniSetu-EN2PA** model, there is room for improvement, particularly in increasing the chrF++ score. Future versions of the model will focus on optimizing performance, enhancing the translation quality, and expanding to additional domains. Stay tuned for updates, and feel free to contribute or raise issues on Hugging Face or the associated repositories! ### Resources - **Training Data**: [Bharat Parallel Corpus Collection (BPCC)](https://github.com/AI4Bharat/IndicTrans2) by AI4Bharat. - **Evaluation Data**: [IN22-Conv dataset](https://github.com/AI4Bharat/IndicTrans2). - **Benchmarks**: [Translation Benchmarks Paper](https://arxiv.org/pdf/2305.16307). ## Acknowledgements - [AI4Bharat](https://github.com/AI4Bharat/IndicTrans2): The training and evaluation data we took from. ### License This model is licensed under the appropriate terms for the **LLaMA** architecture and any datasets used during fine-tuning.