--- base_model: bigcode/starcoderbase-1b library_name: peft license: bigcode-openrail-m tags: - generated_from_trainer model-index: - name: peft-starcoder-finetuned results: [] --- # peft-starcoder-finetuned This model is a fine-tuned version of [bigcode/starcoderbase-1b](https://huggingface.co/bigcode/starcoderbase-1b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.276 | 0.0416 | 10 | 1.0832 | | 1.2151 | 0.0833 | 20 | 1.0789 | | 1.2213 | 0.1249 | 30 | 1.0736 | | 1.1694 | 0.1666 | 40 | 1.0718 | | 1.2627 | 0.2082 | 50 | 1.0696 | | 1.1801 | 0.2499 | 60 | 1.0690 | | 1.1013 | 0.2915 | 70 | 1.0637 | | 1.082 | 0.3332 | 80 | 1.0643 | | 1.0783 | 0.3748 | 90 | 1.0638 | | 1.1166 | 0.4164 | 100 | 1.0615 | | 1.1207 | 0.4581 | 110 | 1.0581 | | 1.197 | 0.4997 | 120 | 1.0562 | | 1.012 | 0.5414 | 130 | 1.0583 | | 1.1291 | 0.5830 | 140 | 1.0515 | | 1.0695 | 0.6247 | 150 | 1.0520 | | 1.0924 | 0.6663 | 160 | 1.0514 | | 1.1287 | 0.7080 | 170 | 1.0536 | | 1.0514 | 0.7496 | 180 | 1.0508 | | 1.1101 | 0.7913 | 190 | 1.0491 | | 1.1474 | 0.8329 | 200 | 1.0489 | | 1.1451 | 0.8745 | 210 | 1.0476 | | 1.1688 | 0.9162 | 220 | 1.0434 | | 1.053 | 0.9578 | 230 | 1.0447 | | 1.0146 | 0.9995 | 240 | 1.0438 | | 1.1127 | 1.0411 | 250 | 1.0442 | | 0.9734 | 1.0828 | 260 | 1.0420 | | 1.0315 | 1.1244 | 270 | 1.0445 | | 1.0803 | 1.1661 | 280 | 1.0435 | | 1.0892 | 1.2077 | 290 | 1.0440 | | 1.0191 | 1.2493 | 300 | 1.0427 | | 1.034 | 1.2910 | 310 | 1.0416 | | 1.1136 | 1.3326 | 320 | 1.0413 | | 0.9837 | 1.3743 | 330 | 1.0413 | | 1.0659 | 1.4159 | 340 | 1.0405 | | 0.9931 | 1.4576 | 350 | 1.0409 | | 1.1141 | 1.4992 | 360 | 1.0403 | | 1.0851 | 1.5409 | 370 | 1.0399 | | 1.053 | 1.5825 | 380 | 1.0390 | | 1.0652 | 1.6242 | 390 | 1.0395 | | 1.0998 | 1.6658 | 400 | 1.0396 | | 0.9909 | 1.7074 | 410 | 1.0390 | | 1.0946 | 1.7491 | 420 | 1.0386 | | 1.0471 | 1.7907 | 430 | 1.0382 | | 0.9719 | 1.8324 | 440 | 1.0382 | | 1.0641 | 1.8740 | 450 | 1.0382 | | 1.0003 | 1.9157 | 460 | 1.0383 | | 1.0128 | 1.9573 | 470 | 1.0383 | | 1.0637 | 1.9990 | 480 | 1.0384 | | 1.0583 | 2.0406 | 490 | 1.0383 | | 0.991 | 2.0822 | 500 | 1.0382 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.3