--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - wmt20_mlqe_task1 model-index: - name: xlmr-wmt20qe1-et-en-train_shuffled-1986-test2000 results: [] --- # xlmr-wmt20qe1-et-en-train_shuffled-1986-test2000 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the wmt20_mlqe_task1 dataset. It achieves the following results on the evaluation set: - Loss: 0.5172 - R Squared: 0.3115 - Mae: 0.5282 - Pearson R: 0.6791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1986 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | R Squared | Mae | Pearson R | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---------:| | No log | 1.0 | 375 | 0.5029 | 0.3306 | 0.5891 | 0.6394 | | 0.7331 | 2.0 | 750 | 0.4183 | 0.4432 | 0.4958 | 0.6849 | | 0.5087 | 3.0 | 1125 | 0.5172 | 0.3115 | 0.5282 | 0.6791 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.6 - Tokenizers 0.14.1