--- license: mit base_model: - Ultralytics/YOLO11 pipeline_tag: object-detection tags: - plant - leaf - leaves --- # YOLOv11 Model for Plant Leaves Detection ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f9f9fcca8fdc72b5d3b854/ez9_FEOoq8Zt_VkNmBRhB.png) This is a YOLOv11 model trained for detecting plant leaves. ## Model Details - **Framework**: Ultralytics YOLO - **Classes**: Leaf - **Usage**: Designed for agriculture applications. ## Dataset Training dataset from https://www.kaggle.com/datasets/alexo98/leaf-detection Dataset adaptation to YOLO format from https://www.kaggle.com/code/luisolazo/leaf-detection-w-ultralytics-yolov8-and-tflite ## Usage ```python from ultralytics import YOLO import cv2 import matplotlib.pyplot as plt # Load the YOLO model model = YOLO('yolo11x_leaf.pt') # Run inference on an image or directory result = model.predict('file/directory', task="detect", save=False, conf=0.15) # Load the original image image_path = result.path image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Annotate the image with predictions annotated_image = result.plot() # Display the annotated image plt.figure(figsize=(10, 7)) plt.imshow(annotated_image) plt.axis("off") plt.title(f"Predictions for Image") plt.show() ``` ## Examples ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f9f9fcca8fdc72b5d3b854/8vQB1rwEaMVU9O5u0kUdh.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f9f9fcca8fdc72b5d3b854/4_NqnutjDxmXu2G0c4bWd.png)