peterxyz commited on
Commit
3224c20
1 Parent(s): ac8eace

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1352.85 +/- 32.73
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ed71eabb63d8081d4d8502099be8689928aaab684c1c0fc0c218ab70f58938a
3
+ size 129237
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbaa9343700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbaa9343790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbaa9343820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbaa93438b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbaa9343940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbaa93439d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbaa9343a60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbaa9343af0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbaa9343b80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbaa9343c10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbaa9343ca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbaa9343d30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fbaa933fa80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677754969567210482,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": "./tensorboard",
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABQ7AT8vMQm+v1kIP6L3tj+jwtq/JAK5v8XdnD4piqm/pCmDP4SfGz64M0Y/p1sswLI26b9R74Q/QiKbvu6HdT9mvhm/kv0PP9nkfT9Qrpg87kGHv5Sb+T+97jm/ZY/yP+ak7T5wiak+3dDjPi3Vrb+6qwc+fJR+P3opSD8MU30/H7I3v/naVT/8+pQ+8cSLv21qAL6qDi8/FZhqP3lE1ztZOv2+Uq7qvT96xj7GW7E9PC98P56N37551P0+orPHvXDbvz3X1fG+HaQjPxmlqr/mpO0+cImpPt3Q4z4t1a2/iPuBPzztMj/zu0g/dR3BPwXPcr9qQeo+YtGSvamqqr/0ngc/sFwJP5eloD/MRuK8c8shu3Sv9L76bMg+optVvhLIGb6Byji/Q21VPsFB0D5KoYc+f0eVv7IVBT/a1JS/5qTtPnCJqT7d0OM+LdWtv/cY/D7TT30/dURIP2Wv9z8EAR+/Ze+ZvjNRHD9UNt6+urN9P1klR74oBlM/4dI4PmNJgb+kcWa/HI8Zv8pXib/arE4+C32Dv5ch6D5RF8w+JIrRv6qOx7+VypO+MaYov+ak7T5wiak+3dDjPi3Vrb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACKZJs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqb3vvQAAAAAmp92/AAAAAPxR2T0AAAAARt/5PwAAAACUgxa9AAAAAKDk4T8AAAAArdObuwAAAABJTf6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQyOANgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHFwp70AAAAAVzHtvwAAAAAy7CK9AAAAAC+D5z8AAAAAqakLPgAAAADNmwBAAAAAAHFY9jsAAAAAsmL9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJfe5jYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB+fg6+AAAAAKa35L8AAAAApH4BPQAAAADLU+o/AAAAACB+bT0AAAAATOPhPwAAAAAoE4G9AAAAAJfz6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD62RC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4X+PvQAAAAAgJee/AAAAAOeDPrwAAAAAFIv6PwAAAABQ0iW9AAAAACdk2T8AAAAAMzfbPQAAAABAhPC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJL72HSF49qMAWyUTegDjAF0lEdApLq5FRYRunV9lChoBkdAkQDK2fChvmgHTegDaAhHQKS9HcL0Bfd1fZQoaAZHQJGGIDEFW4poB03oA2gIR0CkvqpY1YQrdX2UKGgGR0CRDruaF23baAdN6ANoCEdApMLXDWK/EnV9lChoBkdAkG7iqdYnv2gHTegDaAhHQKTFbdX1ant1fZQoaAZHQJDJaN4qwyJoB03oA2gIR0Ckx9oB7u2JdX2UKGgGR0CQhhttygf2aAdN6ANoCEdApMlfy5I6KnV9lChoBkdAjVQeHaewtGgHTegDaAhHQKTNtlMAWBV1fZQoaAZHQJI6D6wdKdxoB03oA2gIR0Ck0Oeo1k1/dX2UKGgGR0CRnN6IFeOXaAdN6ANoCEdApNNXvF3pwHV9lChoBkdAknPQMUh3aGgHTegDaAhHQKTVTxSYPXl1fZQoaAZHQJPbvkeZG8VoB03oA2gIR0Ck2fTvRZ2ZdX2UKGgGR0CU4ye4TbnHaAdN6ANoCEdApNyitFKChHV9lChoBkdAknnlEuxrz2gHTegDaAhHQKTfGEXcgyN1fZQoaAZHQJGW5Ynv2GtoB03oA2gIR0Ck4KAbp/wzdX2UKGgGR0CQuejB2wFDaAdN6ANoCEdApOTl56dDpnV9lChoBkdAkPh82rGR3mgHTegDaAhHQKTnkiQkond1fZQoaAZHQJIiDfuTibVoB03oA2gIR0Ck6gisGPgfdX2UKGgGR0CSaAGLk0aZaAdN6ANoCEdApOuV2V3Ux3V9lChoBkdAjyKa3y7PIGgHTegDaAhHQKTvybWmP5p1fZQoaAZHQJJO1JyyUs5oB03oA2gIR0Ck8ozq8lHCdX2UKGgGR0CPkcvPkaMraAdN6ANoCEdApPUf9DQZ43V9lChoBkdAkrZGnXNC7mgHTegDaAhHQKT2rShJyyV1fZQoaAZHQIn4Tl/6O5toB03oA2gIR0Ck+s3RgJC0dX2UKGgGR0CPxWPLgXMyaAdN6ANoCEdApP2w4KhL5HV9lChoBkdAkY44JE6T4mgHTegDaAhHQKUAVQBPsRh1fZQoaAZHQI8GRMYdhiNoB03oA2gIR0ClAd0DMeOodX2UKGgGR0CRUBnuRcNZaAdN6ANoCEdApQYOluWKM3V9lChoBkdAjypLr5ZbIWgHTegDaAhHQKUIyPhhpg11fZQoaAZHQI3cWWrwOONoB03oA2gIR0ClCzQvQF9sdX2UKGgGR0CPfQvNeMQ3aAdN6ANoCEdApQzC7ROUMXV9lChoBkdAi6RrqlgtvmgHTegDaAhHQKURMXizcAR1fZQoaAZHQJBE77XQMQVoB03oA2gIR0ClFAd69kBkdX2UKGgGR0COYI68xsVMaAdN6ANoCEdApRZsmWt2cXV9lChoBkdAj8ZYN7SiNGgHTegDaAhHQKUX/RSgoPV1fZQoaAZHQI4Hr2+PBBRoB03oA2gIR0ClHCWh7E5ydX2UKGgGR0CQq2ADJU5uaAdN6ANoCEdApR715hScb3V9lChoBkdAkW0hdld1MmgHTegDaAhHQKUhUqZtvXN1fZQoaAZHQJIjeZx7zCloB03oA2gIR0ClIt7SZ0CBdX2UKGgGR0CPBtTefqX4aAdN6ANoCEdApSb6zollb3V9lChoBkdAkelMw+MZP2gHTegDaAhHQKUpkpb2USt1fZQoaAZHQJBASU8mrsBoB03oA2gIR0ClK/Abp/wzdX2UKGgGR0CQh6QwblzVaAdN6ANoCEdApS2QcLjPwHV9lChoBkdAkGdvM4cWCWgHTegDaAhHQKUxqiX6ZYx1fZQoaAZHQJFcmg9Net1oB03oA2gIR0ClNGDs2NvPdX2UKGgGR0CPsS8jiXIEaAdN6ANoCEdApTcFmFrVOXV9lChoBkdAkBks9Oh0yWgHTegDaAhHQKU4pFNL1291fZQoaAZHQJBEHP7el9BoB03oA2gIR0ClPOF+d9UkdX2UKGgGR0CQOtNzbN8maAdN6ANoCEdApT96ciGFjHV9lChoBkdAkE/eNT987mgHTegDaAhHQKVB8jjaPCF1fZQoaAZHQJFJ5XjlxOtoB03oA2gIR0ClQ310tAcDdX2UKGgGR0CQuTZCfHxSaAdN6ANoCEdApUe/kRzzVnV9lChoBkdAkMHShnJ1aGgHTegDaAhHQKVKduJk5IZ1fZQoaAZHQI5S6Q5myxBoB03oA2gIR0ClTPCW/rSmdX2UKGgGR0CNa4rcTJyRaAdN6ANoCEdApU53Khcqv3V9lChoBkdAh1abCJoCdWgHTegDaAhHQKVS1gx8D0V1fZQoaAZHQJJAGg9Net1oB03oA2gIR0ClVdOP3i71dX2UKGgGR0CKjshMajveaAdN6ANoCEdApVg9BfKISHV9lChoBkdAkbHvHLida2gHTegDaAhHQKVZ1EMspXp1fZQoaAZHQJGQSkgwGnpoB03oA2gIR0ClXixYA80UdX2UKGgGR0CREn/wRXfZaAdN6ANoCEdApWD4Ygq3E3V9lChoBkdAk9ciIUJv52gHTegDaAhHQKVjdDF6zE91fZQoaAZHQJAP7aJyhi9oB03oA2gIR0ClZPS0jTrndX2UKGgGR0CSydG7BfrsaAdN6ANoCEdApWkKdOIqLHV9lChoBkdAlEoD4cm0FGgHTegDaAhHQKVrsU6gdwN1fZQoaAZHQJK8TezlcQloB03oA2gIR0Clbizqjaf0dX2UKGgGR0CQAv4+bExZaAdN6ANoCEdApW/a2Yv38HV9lChoBkdAkQisNpdrwmgHTegDaAhHQKV0T8E3bVV1fZQoaAZHQJIk4bKifxtoB03oA2gIR0CldwwevIOpdX2UKGgGR0CNZ0m2LHdXaAdN6ANoCEdApXlgzSCvo3V9lChoBkdAjLsl2vB7/mgHTegDaAhHQKV62aLn9vV1fZQoaAZHQJI7hq7AcktoB03oA2gIR0Clfwoy9EkTdX2UKGgGR0CQfhCwr1/UaAdN6ANoCEdApYHGlyimEXV9lChoBkdAkXB0j5bhWGgHTegDaAhHQKWEJxUedTZ1fZQoaAZHQI9P+WKMvRJoB03oA2gIR0Clhar1VYITdX2UKGgGR0CRoROJ+DvmaAdN6ANoCEdApYnKFh5PdnV9lChoBkdAkv3nHeaa1GgHTegDaAhHQKWMbLZi/fx1fZQoaAZHQJChZLdvbXZoB03oA2gIR0CljtYUFjd6dX2UKGgGR0CQMOdNFjNIaAdN6ANoCEdApZBiyWzF/HV9lChoBkdAkggEXUH6dmgHTegDaAhHQKWUkbWEsat1fZQoaAZHQJFe9nHvMKVoB03oA2gIR0Cll1L3TNMXdX2UKGgGR0CRt9Ft8/liaAdN6ANoCEdApZnOZJCjUXV9lChoBkdAkOFV6Vt4zWgHTegDaAhHQKWbSBRQ7911fZQoaAZHQJL/RWXC0nhoB03oA2gIR0Cln66Rp1zRdX2UKGgGR0CT4g1jiGWVaAdN6ANoCEdApaJtk+X7cnV9lChoBkdAkMm8vRJEpmgHTegDaAhHQKWk0GZ/kNp1fZQoaAZHQJI6jgjyFwloB03oA2gIR0Clpl2m51/2dX2UKGgGR0CR+TSsbNr1aAdN6ANoCEdApaqPze40/HV9lChoBkdAj6+T0Yj0MGgHTegDaAhHQKWtMLE1l5J1fZQoaAZHQJApLAM2FWZoB03oA2gIR0Clr5oHkcS5dX2UKGgGR0CRZq4+bExZaAdN6ANoCEdApbEg1UEPlXV9lChoBkdAkDjvHDJlrmgHTegDaAhHQKW1PgqmTDB1fZQoaAZHQJJquZJCjUNoB03oA2gIR0Clt/IbfgrIdX2UKGgGR0CT1JZmqYJFaAdN6ANoCEdApbpc0Ltu1nV9lChoBkdAlKDb4rSVnmgHTegDaAhHQKW76gMc6vJ1fZQoaAZHQJS4060Y0l9oB03oA2gIR0ClwAyDAaegdX2UKGgGR0CTCJW43FUAaAdN6ANoCEdApcK1RYRuj3V9lChoBkdAkgVyi/O+qWgHTegDaAhHQKXFJ/kvK2d1fZQoaAZHQJMhsBDG96FoB03oA2gIR0ClxqX8O09hdX2UKGgGR0CTyGij+JgtaAdN6ANoCEdApcrVb3XZoXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8709d9bac9610774e9abc06512ed8c2cb4f6f85db475b2e2da38bdc9c0a4aa62
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5574fa0bb25a45889eb4df6a756e93d55f39eca64930cb0678637075b1db60fd
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.31 # 138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.12.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbaa9343700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbaa9343790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbaa9343820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbaa93438b0>", "_build": "<function ActorCriticPolicy._build at 0x7fbaa9343940>", "forward": "<function ActorCriticPolicy.forward at 0x7fbaa93439d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbaa9343a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbaa9343af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbaa9343b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbaa9343c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbaa9343ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbaa9343d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbaa933fa80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677754969567210482, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABQ7AT8vMQm+v1kIP6L3tj+jwtq/JAK5v8XdnD4piqm/pCmDP4SfGz64M0Y/p1sswLI26b9R74Q/QiKbvu6HdT9mvhm/kv0PP9nkfT9Qrpg87kGHv5Sb+T+97jm/ZY/yP+ak7T5wiak+3dDjPi3Vrb+6qwc+fJR+P3opSD8MU30/H7I3v/naVT/8+pQ+8cSLv21qAL6qDi8/FZhqP3lE1ztZOv2+Uq7qvT96xj7GW7E9PC98P56N37551P0+orPHvXDbvz3X1fG+HaQjPxmlqr/mpO0+cImpPt3Q4z4t1a2/iPuBPzztMj/zu0g/dR3BPwXPcr9qQeo+YtGSvamqqr/0ngc/sFwJP5eloD/MRuK8c8shu3Sv9L76bMg+optVvhLIGb6Byji/Q21VPsFB0D5KoYc+f0eVv7IVBT/a1JS/5qTtPnCJqT7d0OM+LdWtv/cY/D7TT30/dURIP2Wv9z8EAR+/Ze+ZvjNRHD9UNt6+urN9P1klR74oBlM/4dI4PmNJgb+kcWa/HI8Zv8pXib/arE4+C32Dv5ch6D5RF8w+JIrRv6qOx7+VypO+MaYov+ak7T5wiak+3dDjPi3Vrb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACKZJs2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqb3vvQAAAAAmp92/AAAAAPxR2T0AAAAARt/5PwAAAACUgxa9AAAAAKDk4T8AAAAArdObuwAAAABJTf6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQyOANgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHFwp70AAAAAVzHtvwAAAAAy7CK9AAAAAC+D5z8AAAAAqakLPgAAAADNmwBAAAAAAHFY9jsAAAAAsmL9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJfe5jYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB+fg6+AAAAAKa35L8AAAAApH4BPQAAAADLU+o/AAAAACB+bT0AAAAATOPhPwAAAAAoE4G9AAAAAJfz6L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD62RC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4X+PvQAAAAAgJee/AAAAAOeDPrwAAAAAFIv6PwAAAABQ0iW9AAAAACdk2T8AAAAAMzfbPQAAAABAhPC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJL72HSF49qMAWyUTegDjAF0lEdApLq5FRYRunV9lChoBkdAkQDK2fChvmgHTegDaAhHQKS9HcL0Bfd1fZQoaAZHQJGGIDEFW4poB03oA2gIR0CkvqpY1YQrdX2UKGgGR0CRDruaF23baAdN6ANoCEdApMLXDWK/EnV9lChoBkdAkG7iqdYnv2gHTegDaAhHQKTFbdX1ant1fZQoaAZHQJDJaN4qwyJoB03oA2gIR0Ckx9oB7u2JdX2UKGgGR0CQhhttygf2aAdN6ANoCEdApMlfy5I6KnV9lChoBkdAjVQeHaewtGgHTegDaAhHQKTNtlMAWBV1fZQoaAZHQJI6D6wdKdxoB03oA2gIR0Ck0Oeo1k1/dX2UKGgGR0CRnN6IFeOXaAdN6ANoCEdApNNXvF3pwHV9lChoBkdAknPQMUh3aGgHTegDaAhHQKTVTxSYPXl1fZQoaAZHQJPbvkeZG8VoB03oA2gIR0Ck2fTvRZ2ZdX2UKGgGR0CU4ye4TbnHaAdN6ANoCEdApNyitFKChHV9lChoBkdAknnlEuxrz2gHTegDaAhHQKTfGEXcgyN1fZQoaAZHQJGW5Ynv2GtoB03oA2gIR0Ck4KAbp/wzdX2UKGgGR0CQuejB2wFDaAdN6ANoCEdApOTl56dDpnV9lChoBkdAkPh82rGR3mgHTegDaAhHQKTnkiQkond1fZQoaAZHQJIiDfuTibVoB03oA2gIR0Ck6gisGPgfdX2UKGgGR0CSaAGLk0aZaAdN6ANoCEdApOuV2V3Ux3V9lChoBkdAjyKa3y7PIGgHTegDaAhHQKTvybWmP5p1fZQoaAZHQJJO1JyyUs5oB03oA2gIR0Ck8ozq8lHCdX2UKGgGR0CPkcvPkaMraAdN6ANoCEdApPUf9DQZ43V9lChoBkdAkrZGnXNC7mgHTegDaAhHQKT2rShJyyV1fZQoaAZHQIn4Tl/6O5toB03oA2gIR0Ck+s3RgJC0dX2UKGgGR0CPxWPLgXMyaAdN6ANoCEdApP2w4KhL5HV9lChoBkdAkY44JE6T4mgHTegDaAhHQKUAVQBPsRh1fZQoaAZHQI8GRMYdhiNoB03oA2gIR0ClAd0DMeOodX2UKGgGR0CRUBnuRcNZaAdN6ANoCEdApQYOluWKM3V9lChoBkdAjypLr5ZbIWgHTegDaAhHQKUIyPhhpg11fZQoaAZHQI3cWWrwOONoB03oA2gIR0ClCzQvQF9sdX2UKGgGR0CPfQvNeMQ3aAdN6ANoCEdApQzC7ROUMXV9lChoBkdAi6RrqlgtvmgHTegDaAhHQKURMXizcAR1fZQoaAZHQJBE77XQMQVoB03oA2gIR0ClFAd69kBkdX2UKGgGR0COYI68xsVMaAdN6ANoCEdApRZsmWt2cXV9lChoBkdAj8ZYN7SiNGgHTegDaAhHQKUX/RSgoPV1fZQoaAZHQI4Hr2+PBBRoB03oA2gIR0ClHCWh7E5ydX2UKGgGR0CQq2ADJU5uaAdN6ANoCEdApR715hScb3V9lChoBkdAkW0hdld1MmgHTegDaAhHQKUhUqZtvXN1fZQoaAZHQJIjeZx7zCloB03oA2gIR0ClIt7SZ0CBdX2UKGgGR0CPBtTefqX4aAdN6ANoCEdApSb6zollb3V9lChoBkdAkelMw+MZP2gHTegDaAhHQKUpkpb2USt1fZQoaAZHQJBASU8mrsBoB03oA2gIR0ClK/Abp/wzdX2UKGgGR0CQh6QwblzVaAdN6ANoCEdApS2QcLjPwHV9lChoBkdAkGdvM4cWCWgHTegDaAhHQKUxqiX6ZYx1fZQoaAZHQJFcmg9Net1oB03oA2gIR0ClNGDs2NvPdX2UKGgGR0CPsS8jiXIEaAdN6ANoCEdApTcFmFrVOXV9lChoBkdAkBks9Oh0yWgHTegDaAhHQKU4pFNL1291fZQoaAZHQJBEHP7el9BoB03oA2gIR0ClPOF+d9UkdX2UKGgGR0CQOtNzbN8maAdN6ANoCEdApT96ciGFjHV9lChoBkdAkE/eNT987mgHTegDaAhHQKVB8jjaPCF1fZQoaAZHQJFJ5XjlxOtoB03oA2gIR0ClQ310tAcDdX2UKGgGR0CQuTZCfHxSaAdN6ANoCEdApUe/kRzzVnV9lChoBkdAkMHShnJ1aGgHTegDaAhHQKVKduJk5IZ1fZQoaAZHQI5S6Q5myxBoB03oA2gIR0ClTPCW/rSmdX2UKGgGR0CNa4rcTJyRaAdN6ANoCEdApU53Khcqv3V9lChoBkdAh1abCJoCdWgHTegDaAhHQKVS1gx8D0V1fZQoaAZHQJJAGg9Net1oB03oA2gIR0ClVdOP3i71dX2UKGgGR0CKjshMajveaAdN6ANoCEdApVg9BfKISHV9lChoBkdAkbHvHLida2gHTegDaAhHQKVZ1EMspXp1fZQoaAZHQJGQSkgwGnpoB03oA2gIR0ClXixYA80UdX2UKGgGR0CREn/wRXfZaAdN6ANoCEdApWD4Ygq3E3V9lChoBkdAk9ciIUJv52gHTegDaAhHQKVjdDF6zE91fZQoaAZHQJAP7aJyhi9oB03oA2gIR0ClZPS0jTrndX2UKGgGR0CSydG7BfrsaAdN6ANoCEdApWkKdOIqLHV9lChoBkdAlEoD4cm0FGgHTegDaAhHQKVrsU6gdwN1fZQoaAZHQJK8TezlcQloB03oA2gIR0Clbizqjaf0dX2UKGgGR0CQAv4+bExZaAdN6ANoCEdApW/a2Yv38HV9lChoBkdAkQisNpdrwmgHTegDaAhHQKV0T8E3bVV1fZQoaAZHQJIk4bKifxtoB03oA2gIR0CldwwevIOpdX2UKGgGR0CNZ0m2LHdXaAdN6ANoCEdApXlgzSCvo3V9lChoBkdAjLsl2vB7/mgHTegDaAhHQKV62aLn9vV1fZQoaAZHQJI7hq7AcktoB03oA2gIR0Clfwoy9EkTdX2UKGgGR0CQfhCwr1/UaAdN6ANoCEdApYHGlyimEXV9lChoBkdAkXB0j5bhWGgHTegDaAhHQKWEJxUedTZ1fZQoaAZHQI9P+WKMvRJoB03oA2gIR0Clhar1VYITdX2UKGgGR0CRoROJ+DvmaAdN6ANoCEdApYnKFh5PdnV9lChoBkdAkv3nHeaa1GgHTegDaAhHQKWMbLZi/fx1fZQoaAZHQJChZLdvbXZoB03oA2gIR0CljtYUFjd6dX2UKGgGR0CQMOdNFjNIaAdN6ANoCEdApZBiyWzF/HV9lChoBkdAkggEXUH6dmgHTegDaAhHQKWUkbWEsat1fZQoaAZHQJFe9nHvMKVoB03oA2gIR0Cll1L3TNMXdX2UKGgGR0CRt9Ft8/liaAdN6ANoCEdApZnOZJCjUXV9lChoBkdAkOFV6Vt4zWgHTegDaAhHQKWbSBRQ7911fZQoaAZHQJL/RWXC0nhoB03oA2gIR0Cln66Rp1zRdX2UKGgGR0CT4g1jiGWVaAdN6ANoCEdApaJtk+X7cnV9lChoBkdAkMm8vRJEpmgHTegDaAhHQKWk0GZ/kNp1fZQoaAZHQJI6jgjyFwloB03oA2gIR0Clpl2m51/2dX2UKGgGR0CR+TSsbNr1aAdN6ANoCEdApaqPze40/HV9lChoBkdAj6+T0Yj0MGgHTegDaAhHQKWtMLE1l5J1fZQoaAZHQJApLAM2FWZoB03oA2gIR0Clr5oHkcS5dX2UKGgGR0CRZq4+bExZaAdN6ANoCEdApbEg1UEPlXV9lChoBkdAkDjvHDJlrmgHTegDaAhHQKW1PgqmTDB1fZQoaAZHQJJquZJCjUNoB03oA2gIR0Clt/IbfgrIdX2UKGgGR0CT1JZmqYJFaAdN6ANoCEdApbpc0Ltu1nV9lChoBkdAlKDb4rSVnmgHTegDaAhHQKW76gMc6vJ1fZQoaAZHQJS4060Y0l9oB03oA2gIR0ClwAyDAaegdX2UKGgGR0CTCJW43FUAaAdN6ANoCEdApcK1RYRuj3V9lChoBkdAkgVyi/O+qWgHTegDaAhHQKXFJ/kvK2d1fZQoaAZHQJMhsBDG96FoB03oA2gIR0ClxqX8O09hdX2UKGgGR0CTyGij+JgtaAdN6ANoCEdApcrVb3XZoXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-122-generic-x86_64-with-glibc2.31 # 138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.12.1+cu116", "GPU Enabled": "True", "Numpy": "1.23.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (956 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1352.8496303755178, "std_reward": 32.73038980599372, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T11:54:15.091077"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ed9a242f4b84a533c08ff49ed97cf2fddb994c3a81f4048f882b4120c0b9dfd
3
+ size 2521