File size: 2,068 Bytes
edb0d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: MiniLMv2-L6-H384-sst2
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: glue
      type: glue
      args: sst2
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9197247706422018
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MiniLMv2-L6-H384-sst2

This model is a fine-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2532
- Accuracy: 0.9197

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: sagemaker_data_parallel
- num_devices: 8
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5787        | 1.0   | 264  | 0.3496          | 0.8624   |
| 0.3413        | 2.0   | 528  | 0.2599          | 0.8991   |
| 0.2716        | 3.0   | 792  | 0.2651          | 0.9048   |
| 0.2343        | 4.0   | 1056 | 0.2532          | 0.9197   |
| 0.2165        | 5.0   | 1320 | 0.2636          | 0.9151   |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.2+cu113
- Datasets 1.18.4
- Tokenizers 0.11.6