from typing import Dict, List, Any from transformers import DonutProcessor, VisionEncoderDecoderModel import torch # check for GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class EndpointHandler: def __init__(self, path=""): # load the model self.processor = DonutProcessor.from_pretrained(path) self.model = VisionEncoderDecoderModel.from_pretrained(path) # move model to device self.model.to(device) self.decoder_input_ids = self.processor.tokenizer( "", add_special_tokens=False, return_tensors="pt" ).input_ids def __call__(self, data: Any) -> List[List[Dict[str, float]]]: inputs = data.pop("inputs", data) # preprocess the input pixel_values = self.processor(inputs, return_tensors="pt").pixel_values # forward pass outputs = self.model.generate( pixel_values.to(device), decoder_input_ids=self.decoder_input_ids.to(device), max_length=self.model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=self.processor.tokenizer.pad_token_id, eos_token_id=self.processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[self.processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) # process output prediction = self.processor.batch_decode(outputs.sequences)[0] prediction = self.processor.token2json(prediction) return prediction