from typing import Dict, List, Any | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
import torch | |
class EndpointHandler: | |
def __init__(self, path=""): | |
# load model and processor from path | |
self.model = AutoModelForSeq2SeqLM.from_pretrained(path, device_map="auto", load_in_8bit=True) | |
self.tokenizer = AutoTokenizer.from_pretrained(path) | |
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: | |
""" | |
Args: | |
data (:obj:): | |
includes the deserialized image file as PIL.Image | |
""" | |
# process input | |
inputs = data.pop("inputs", data) | |
parameters = data.pop("parameters", None) | |
# preprocess | |
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids | |
# pass inputs with all kwargs in data | |
if parameters is not None: | |
outputs = self.model.generate(input_ids, **parameters) | |
else: | |
outputs = self.model.generate(input_ids) | |
# postprocess the prediction | |
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return [{"generated_text": prediction}] |