File size: 9,727 Bytes
a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 141e879 a854397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
---
license: mit
tags:
- sentence-embeddings
- endpoints-template
- optimum
library_name: generic
---
# Optimized and Quantized [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) with a custom handler.py
This repository implements a `custom` handler for `question-answering` for 🤗 Inference Endpoints for accelerated inference using [🤗 Optiumum](https://huggingface.co/docs/optimum/index). The code for the customized handler is in the [handler.py](https://huggingface.co/philschmid/roberta-base-squad2-optimized/blob/main/handler.py).
Below is also describe how we converted & optimized the model, based on the [Accelerate Transformers with Hugging Face Optimum](https://huggingface.co/blog/optimum-inference) blog post. You can also check out the [notebook](https://huggingface.co/philschmid/roberta-base-squad2-optimized/blob/main/optimize_model.ipynb).
### expected Request payload
```json
{
"inputs": {
"question": "As what is Philipp working?",
"context": "Hello, my name is Philipp and I live in Nuremberg, Germany. Currently I am working as a Technical Lead at Hugging Face to democratize artificial intelligence through open source and open science. In the past I designed and implemented cloud-native machine learning architectures for fin-tech and insurance companies. I found my passion for cloud concepts and machine learning 5 years ago. Since then I never stopped learning. Currently, I am focusing myself in the area NLP and how to leverage models like BERT, Roberta, T5, ViT, and GPT2 to generate business value."
}
}
```
below is an example on how to run a request using Python and `requests`.
## Run Request
```python
import json
from typing import List
import requests as r
import base64
ENDPOINT_URL = ""
HF_TOKEN = ""
def predict(question:str=None,context:str=None):
payload = {"inputs": {"question": question, "context": context}}
response = r.post(
ENDPOINT_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, json=payload
)
return response.json()
prediction = predict(
question="As what is Philipp working?",
context="Hello, my name is Philipp and I live in Nuremberg, Germany. Currently I am working as a Technical Lead at Hugging Face to democratize artificial intelligence through open source and open science."
)
```
expected output
```python
{
'score': 0.4749588668346405,
'start': 88,
'end': 102,
'answer': 'Technical Lead'
}
```
# Convert & Optimize model with Optimum
Steps:
1. [Convert model to ONNX](#1-convert-model-to-onnx)
2. [Optimize & quantize model with Optimum](#2-optimize--quantize-model-with-optimum)
3. [Create Custom Handler for Inference Endpoints](#3-create-custom-handler-for-inference-endpoints)
4. [Test Custom Handler Locally](#4-test-custom-handler-locally)
5. [Push to repository and create Inference Endpoint](#5-push-to-repository-and-create-inference-endpoint)
Helpful links:
* [Accelerate Transformers with Hugging Face Optimum](https://huggingface.co/blog/optimum-inference)
* [Optimizing Transformers for GPUs with Optimum](https://www.philschmid.de/optimizing-transformers-with-optimum-gpu)
* [Optimum Documentation](https://huggingface.co/docs/optimum/onnxruntime/modeling_ort)
* [Create Custom Handler Endpoints](https://link-to-docs)
## Setup & Installation
```python
%%writefile requirements.txt
optimum[onnxruntime]==1.4.0
mkl-include
mkl
```
```python
!pip install -r requirements.txt
```
## 0. Base line Performance
```python
from transformers import pipeline
qa = pipeline("question-answering",model="deepset/roberta-base-squad2")
```
Okay, let's test the performance (latency) with sequence length of 128.
```python
context="Hello, my name is Philipp and I live in Nuremberg, Germany. Currently I am working as a Technical Lead at Hugging Face to democratize artificial intelligence through open source and open science. In the past I designed and implemented cloud-native machine learning architectures for fin-tech and insurance companies. I found my passion for cloud concepts and machine learning 5 years ago. Since then I never stopped learning. Currently, I am focusing myself in the area NLP and how to leverage models like BERT, Roberta, T5, ViT, and GPT2 to generate business value."
question="As what is Philipp working?"
payload = {"inputs": {"question": question, "context": context}}
```
```python
from time import perf_counter
import numpy as np
def measure_latency(pipe,payload):
latencies = []
# warm up
for _ in range(10):
_ = pipe(question=payload["inputs"]["question"], context=payload["inputs"]["context"])
# Timed run
for _ in range(50):
start_time = perf_counter()
_ = pipe(question=payload["inputs"]["question"], context=payload["inputs"]["context"])
latency = perf_counter() - start_time
latencies.append(latency)
# Compute run statistics
time_avg_ms = 1000 * np.mean(latencies)
time_std_ms = 1000 * np.std(latencies)
return f"Average latency (ms) - {time_avg_ms:.2f} +\- {time_std_ms:.2f}"
print(f"Vanilla model {measure_latency(qa,payload)}")
# Vanilla model Average latency (ms) - 64.15 +\- 2.44
```
## 1. Convert model to ONNX
```python
from optimum.onnxruntime import ORTModelForQuestionAnswering
from transformers import AutoTokenizer
from pathlib import Path
model_id="deepset/roberta-base-squad2"
onnx_path = Path(".")
# load vanilla transformers and convert to onnx
model = ORTModelForQuestionAnswering.from_pretrained(model_id, from_transformers=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# save onnx checkpoint and tokenizer
model.save_pretrained(onnx_path)
tokenizer.save_pretrained(onnx_path)
```
## 2. Optimize & quantize model with Optimum
```python
from optimum.onnxruntime import ORTOptimizer, ORTQuantizer
from optimum.onnxruntime.configuration import OptimizationConfig, AutoQuantizationConfig
# Create the optimizer
optimizer = ORTOptimizer.from_pretrained(model)
# Define the optimization strategy by creating the appropriate configuration
optimization_config = OptimizationConfig(optimization_level=99) # enable all optimizations
# Optimize the model
optimizer.optimize(save_dir=onnx_path, optimization_config=optimization_config)
```
```python
# create ORTQuantizer and define quantization configuration
dynamic_quantizer = ORTQuantizer.from_pretrained(onnx_path, file_name="model_optimized.onnx")
dqconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=False)
# apply the quantization configuration to the model
model_quantized_path = dynamic_quantizer.quantize(
save_dir=onnx_path,
quantization_config=dqconfig,
)
```
## 3. Create Custom Handler for Inference Endpoints
```python
%%writefile handler.py
from typing import Dict, List, Any
from optimum.onnxruntime import ORTModelForQuestionAnswering
from transformers import AutoTokenizer, pipeline
class EndpointHandler():
def __init__(self, path=""):
# load the optimized model
self.model = ORTModelForQuestionAnswering.from_pretrained(path, file_name="model_optimized_quantized.onnx")
self.tokenizer = AutoTokenizer.from_pretrained(path)
# create pipeline
self.pipeline = pipeline("question-answering", model=self.model, tokenizer=self.tokenizer)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`list`:. The list contains the answer and scores of the inference inputs
"""
inputs = data.get("inputs", data)
# run the model
prediction = self.pipeline(**inputs)
# return prediction
return prediction
```
## 4. Test Custom Handler Locally
```python
from handler import EndpointHandler
# init handler
my_handler = EndpointHandler(path=".")
# prepare sample payload
context="Hello, my name is Philipp and I live in Nuremberg, Germany. Currently I am working as a Technical Lead at Hugging Face to democratize artificial intelligence through open source and open science. In the past I designed and implemented cloud-native machine learning architectures for fin-tech and insurance companies. I found my passion for cloud concepts and machine learning 5 years ago. Since then I never stopped learning. Currently, I am focusing myself in the area NLP and how to leverage models like BERT, Roberta, T5, ViT, and GPT2 to generate business value."
question="As what is Philipp working?"
payload = {"inputs": {"question": question, "context": context}}
# test the handler
my_handler(payload)
```
```python
from time import perf_counter
import numpy as np
def measure_latency(handler,payload):
latencies = []
# warm up
for _ in range(10):
_ = handler(payload)
# Timed run
for _ in range(50):
start_time = perf_counter()
_ = handler(payload)
latency = perf_counter() - start_time
latencies.append(latency)
# Compute run statistics
time_avg_ms = 1000 * np.mean(latencies)
time_std_ms = 1000 * np.std(latencies)
return f"Average latency (ms) - {time_avg_ms:.2f} +\- {time_std_ms:.2f}"
print(f"Optimized & Quantized model {measure_latency(my_handler,payload)}")
# Optimized & Quantized model Average latency (ms) - 29.90 +\- 0.53
```
`Vanilla model Average latency (ms) - 64.15 +\- 2.44`
## 5. Push to repository and create Inference Endpoint
```python
# add all our new files
!git add *
# commit our files
!git commit -m "add custom handler"
# push the files to the hub
!git push
```
|