File size: 1,890 Bytes
82f91fa
340a006
e6415dd
340a006
 
e6415dd
 
340a006
 
 
93472c8
 
 
 
 
 
82f91fa
 
 
 
 
 
 
 
 
e6415dd
 
82f91fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6415dd
 
 
82f91fa
 
 
e6415dd
82f91fa
 
 
 
 
 
e6415dd
 
 
 
 
82f91fa
 
 
 
 
 
 
93472c8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wangchan-sentiment-thai-text-model
  results: []
datasets:
- Wongnai/wongnai_reviews
- pythainlp/wisesight_sentiment
language:
- th
pipeline_tag: text-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wangchan-sentiment-thai-text-model

This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5849
- Accuracy: 0.7535

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.6445        | 1.0   | 3822  | 0.6295          | 0.7309   |
| 0.5865        | 2.0   | 7644  | 0.5855          | 0.7430   |
| 0.5285        | 3.0   | 11466 | 0.5754          | 0.7455   |
| 0.5127        | 4.0   | 15288 | 0.5816          | 0.7492   |
| 0.4861        | 5.0   | 19110 | 0.5849          | 0.7535   |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1