File size: 1,890 Bytes
82f91fa 340a006 e6415dd 340a006 e6415dd 340a006 93472c8 82f91fa e6415dd 82f91fa e6415dd 82f91fa e6415dd 82f91fa e6415dd 82f91fa 93472c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
base_model: airesearch/wangchanberta-base-att-spm-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wangchan-sentiment-thai-text-model
results: []
datasets:
- Wongnai/wongnai_reviews
- pythainlp/wisesight_sentiment
language:
- th
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wangchan-sentiment-thai-text-model
This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5849
- Accuracy: 0.7535
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.6445 | 1.0 | 3822 | 0.6295 | 0.7309 |
| 0.5865 | 2.0 | 7644 | 0.5855 | 0.7430 |
| 0.5285 | 3.0 | 11466 | 0.5754 | 0.7455 |
| 0.5127 | 4.0 | 15288 | 0.5816 | 0.7492 |
| 0.4861 | 5.0 | 19110 | 0.5849 | 0.7535 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1 |