--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer model-index: - name: my-roberta-for-hateful-meme-classification results: [] datasets: - limjiayi/hateful_memes_expanded --- # my-roberta-for-hateful-meme-classification This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an [hateful meme](https://huggingface.co/datasets/limjiayi/hateful_memes_expanded) dataset. It achieves the following results on the evaluation set: - Loss: 0.6894 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5181 | 1.0 | 806 | 0.7357 | | 0.5235 | 2.0 | 1612 | 0.7480 | | 0.4906 | 3.0 | 2418 | 0.7239 | | 0.4673 | 4.0 | 3224 | 0.7252 | | 0.4678 | 5.0 | 4030 | 0.6894 | | 0.4481 | 6.0 | 4836 | 0.7794 | | 0.4038 | 7.0 | 5642 | 0.7926 | | 0.3052 | 8.0 | 6448 | 0.9150 | | 0.2344 | 9.0 | 7254 | 1.1734 | | 0.271 | 10.0 | 8060 | 1.1404 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1