--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: XLMRoBERTa_Lexical_Dataset45K results: [] --- # XLMRoBERTa_Lexical_Dataset45K This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4964 - Accuracy: 0.8870 - F1: 0.8870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:-----:|:---------------:|:--------:|:------:| | No log | 0.2841 | 200 | 0.4614 | 0.7988 | 0.7972 | | No log | 0.5682 | 400 | 0.3716 | 0.8339 | 0.8335 | | No log | 0.8523 | 600 | 0.3603 | 0.8456 | 0.8474 | | 0.455 | 1.1364 | 800 | 0.3298 | 0.8618 | 0.8612 | | 0.455 | 1.4205 | 1000 | 0.3466 | 0.8621 | 0.8598 | | 0.455 | 1.7045 | 1200 | 0.3051 | 0.8697 | 0.8712 | | 0.455 | 1.9886 | 1400 | 0.2924 | 0.8773 | 0.8774 | | 0.3111 | 2.2727 | 1600 | 0.2764 | 0.8847 | 0.8853 | | 0.3111 | 2.5568 | 1800 | 0.2648 | 0.8865 | 0.8866 | | 0.3111 | 2.8409 | 2000 | 0.2571 | 0.8890 | 0.8894 | | 0.2536 | 3.125 | 2200 | 0.2745 | 0.8901 | 0.8898 | | 0.2536 | 3.4091 | 2400 | 0.2801 | 0.8729 | 0.8747 | | 0.2536 | 3.6932 | 2600 | 0.2863 | 0.8892 | 0.8885 | | 0.2536 | 3.9773 | 2800 | 0.2587 | 0.8909 | 0.8902 | | 0.2249 | 4.2614 | 3000 | 0.2728 | 0.8905 | 0.8903 | | 0.2249 | 4.5455 | 3200 | 0.2782 | 0.8873 | 0.8882 | | 0.2249 | 4.8295 | 3400 | 0.2696 | 0.8900 | 0.8908 | | 0.1984 | 5.1136 | 3600 | 0.3226 | 0.8896 | 0.8890 | | 0.1984 | 5.3977 | 3800 | 0.2821 | 0.8921 | 0.8923 | | 0.1984 | 5.6818 | 4000 | 0.3206 | 0.8818 | 0.8830 | | 0.1984 | 5.9659 | 4200 | 0.2800 | 0.8938 | 0.8936 | | 0.178 | 6.25 | 4400 | 0.2892 | 0.8938 | 0.8938 | | 0.178 | 6.5341 | 4600 | 0.3262 | 0.8875 | 0.8880 | | 0.178 | 6.8182 | 4800 | 0.3199 | 0.8876 | 0.8874 | | 0.1556 | 7.1023 | 5000 | 0.3237 | 0.8889 | 0.8892 | | 0.1556 | 7.3864 | 5200 | 0.3540 | 0.8883 | 0.8880 | | 0.1556 | 7.6705 | 5400 | 0.3361 | 0.8925 | 0.8925 | | 0.1556 | 7.9545 | 5600 | 0.3369 | 0.8868 | 0.8877 | | 0.1344 | 8.2386 | 5800 | 0.3449 | 0.8889 | 0.8887 | | 0.1344 | 8.5227 | 6000 | 0.3813 | 0.8888 | 0.8884 | | 0.1344 | 8.8068 | 6200 | 0.3463 | 0.8908 | 0.8910 | | 0.1203 | 9.0909 | 6400 | 0.3781 | 0.8886 | 0.8893 | | 0.1203 | 9.375 | 6600 | 0.3825 | 0.8897 | 0.8897 | | 0.1203 | 9.6591 | 6800 | 0.3842 | 0.8890 | 0.8895 | | 0.1203 | 9.9432 | 7000 | 0.3894 | 0.8885 | 0.8893 | | 0.1069 | 10.2273 | 7200 | 0.4063 | 0.8903 | 0.8900 | | 0.1069 | 10.5114 | 7400 | 0.3976 | 0.8908 | 0.8912 | | 0.1069 | 10.7955 | 7600 | 0.4013 | 0.8892 | 0.8893 | | 0.0942 | 11.0795 | 7800 | 0.4663 | 0.8888 | 0.8886 | | 0.0942 | 11.3636 | 8000 | 0.4394 | 0.8867 | 0.8871 | | 0.0942 | 11.6477 | 8200 | 0.4770 | 0.8852 | 0.8859 | | 0.0942 | 11.9318 | 8400 | 0.4278 | 0.8881 | 0.8881 | | 0.0827 | 12.2159 | 8600 | 0.4431 | 0.8874 | 0.8877 | | 0.0827 | 12.5 | 8800 | 0.4553 | 0.8851 | 0.8856 | | 0.0827 | 12.7841 | 9000 | 0.4546 | 0.8859 | 0.8861 | | 0.0772 | 13.0682 | 9200 | 0.4571 | 0.8883 | 0.8881 | | 0.0772 | 13.3523 | 9400 | 0.4655 | 0.8872 | 0.8870 | | 0.0772 | 13.6364 | 9600 | 0.4700 | 0.8872 | 0.8876 | | 0.0772 | 13.9205 | 9800 | 0.4817 | 0.8863 | 0.8867 | | 0.0692 | 14.2045 | 10000 | 0.4838 | 0.8864 | 0.8868 | | 0.0692 | 14.4886 | 10200 | 0.4825 | 0.8868 | 0.8871 | | 0.0692 | 14.7727 | 10400 | 0.4964 | 0.8870 | 0.8870 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1